Published December 21, 2021 | Version v1
Journal article Open

On the equilibrium electrostatic potential and light-induced charge redistribution in halide perovskite structures

Description

Lead halide perovskites are semiconductor materials which are employed as nonintentionally doped absorbers inserted between two selective carrier transport layers (SCTL), realizing a p-i-n or n-i-p heterojunction. In our study, we have developed and investigated a lateral device, based on methylammonium lead iodide (MAPbI3) in which the p-i-n heterojunction develops in the horizontal direction. Our research suggests that the effective doping level in the MAPbI3 film should be very low, below 1012 cm−3. Along the vertical direction, this doping level is not enough to screen the electric field of the buried heterojunction with the SCTL. The perovskite work function is therefore affected by the work function of the SCTL underneath. From drift-diffusion simulations, we show that intrinsic perovskite-SCTL structures develop mV range surface photovoltages (SPVs) under continuous illumination. However, perovskite-SCTL structures can develop SPVs of hundreds of mV, as confirmed by our measurements. We therefore analyzed the compatibility between low doping and low defect densities in the perovskite layer and such high SPV values using numerical modeling. It is shown that these high SPV values could originate from electronic processes due to large band offsets in the buried perovskite-SCTL heterojunctions, or at the SCTL-transparent conductive oxide (TCO) buried heterojunction. However, such electronic processes can hardly explain the long SPV persistence after switching off the illumination.

Files

manuscript_Davide_Regaldo_MAIN.pdf

Files (1.1 MB)

Name Size Download all
md5:9ba4c0fe33693f438114386f1a76d514
1.1 MB Preview Download

Additional details

Funding

PERCISTAND – Development of all thin-film PERovskite on CIS TANDem photovoltaics 850937
European Commission