Published February 24, 2022 | Version v1
Journal article Open

Waveform Control of Relativistic Electron Dynamics in Laser-Plasma Acceleration

Description

The interaction of ultraintense laser pulses with an underdense plasma is used in laser-plasma acceleration to create compact sources of ultrashort pulses of relativistic electrons and x rays. The accelerating structure is a plasma wave, or wakefield, that is excited by the laser ponderomotive force, a force that is usually assumed to depend solely on the laser envelope and not on its exact waveform. Here, we use near-single-cycle laser pulses with a controlled carrier-envelope phase to show that the actual waveform of the laser field has a clear impact on the plasma response. The beam pointing of our relativistic electron beam oscillates in phase with the carrier-envelope phase of the laser, at an amplitude of 15 mrad, or 30% of the beam divergence. Numerical simulations explain this observation through asymmetries in the injection and acceleration of the electron beam, which are locked to the carrier-envelope phase. These results imply that we achieve waveform control of relativistic electron dynamics. Our results pave the way to high-precision, subcycle control of electron injection in plasma accelerators, enabling the production of attosecond relativistic electron bunches and x rays.

Files

IFAST_WP6_3_Waveform.pdf

Files (1.9 MB)

Name Size Download all
md5:19b577889731cf50104cc1719483102f
1.9 MB Preview Download

Additional details

Funding

I.FAST – Innovation Fostering in Accelerator Science and Technology 101004730
European Commission