Published July 23, 2013 | Version v1
Journal article Open

The gravitationally consistent sea-level fingerprint of future terrestrial ice loss

  • 1. Dipartimento di Scienze di Base e Fondamenti (DiSBeF), Universit`a di Urbino “Carlo Bo” Urbino
  • 2. Bristol Glaciology Centre, University of Bristol, UK

Description

We solve the sea-level equation to investigate the pattern of the gravitationally self-consistent sea-level variations (fingerprints) corresponding to modeled scenarios of future terrestrial ice melt. These were obtained from separate ice dynamics and surface mass balance models for the Greenland and Antarctic ice sheets and by a regionalized mass balance model for glaciers and ice caps. For our mid-range scenario, the ice melt component of total sea-level change attains its largest amplitude in the equatorial oceans, where we predict a cumulative sea-level rise of ~ 25 cm and rates of change close to 3 mm/yr from ice melt alone by 2100. According to our modeling, in low-elevation densely populated coastal zones, the gravitationally consistent sea-level variations due to continental ice loss will range between 50 and 150% of the global mean. This includes the effects of glacial-isostatic adjustment, which mostly contributes across the lateral forebulge regions in North America. While the mid range ocean-averaged elastic-gravitational sea-level variations compare with those associated with thermal expansion and ocean circulation, their combination shows a complex regional pattern, where the former component dominates in the Equatorial Pacific Ocean and the latter in the Arctic Ocean.

Files

104_Spada_GRL.pdf

Files (1.4 MB)

Name Size Download all
md5:059cc142752d7fb335626e82a404c5d0
1.4 MB Preview Download

Additional details

Funding

ICE2SEA – Ice2sea - estimating the future contribution of continental ice to sea-level rise 226375
European Commission