Published August 1, 2022 | Version v1
Journal article Restricted

Total-evidence dating and morphological partitioning: a novel approach to understand the phylogeny and biogeography of augochlorine bees (Hymenoptera: Apoidea)

Description

Gonçalves, Rodrigo Barbosa, De Meira, Odair Milioni, Rosa, Brunno Bueno (2022): Total-evidence dating and morphological partitioning: a novel approach to understand the phylogeny and biogeography of augochlorine bees (Hymenoptera: Apoidea). Zoological Journal of the Linnean Society 195 (4): 1390-1406, DOI: 10.1093/zoolinnean/zlab098, URL: https://academic.oup.com/zoolinnean/article/195/4/1390/6530432

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFD34A7EE6059F74FC24FFA8FFA82326

References

  • Acenolaza FG. 2000. La formacion Parana (Mioceno medio): estratigrafia, distribucion regional y unidades equivalentes. Instituto Superior de Correlacion Geologica (INSUGEO). Serie Correlacion Geologica 14: 928.
  • Aguiar AJ, Melo GAR, Vasconcelos TN, Goncalves RB, Giugliano L, Martins AC. 2020. Biogeography and early diversification of Tapinotaspidini oil-bees support the presence of Paleocene savannas in South America. Molecular Phylogenetics and Evolution 143: 106692.
  • Alexander BA, Michener CD. 1995. Phylogenetic studies of the families of short-tongued bees (Hymenoptera: Apoidea). University of Kansas Science Bulletin 55: 377-424.
  • Almeida EA, Packer L, Melo GAR, Danforth BN, Cardinal SC, Quintero FB, Pie MR. 2019. The diversification of neopasiphaeine bees during the Cenozoic (Hymenoptera: Colletidae). Zoologica Scripta 48: 226-242.
  • Almeida EAB, Pie MR, Brady SG, Danforth BN. 2012. Biogeography and diversification of colletid bees (Hymenoptera: Colletidae): emerging patterns from the southern end of the world. Journal of Biogeography 39: 526-544.
  • Alroy J. 2020. Baltic amber. Fossilworks: gateway to the paleobiology database. Available at: http://www.fossilworks.org
  • Amorim DS, Pires MRS. 1996. Neotropical biogeography and a method for maximum biodiversity estimation. In: Bicudo CEM, Menezes NA, eds. Biodiversity in Brazil: a first approach. Sao Paulo: Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, 183-219.
  • Antonelli A, Nylander JA, Persson C, Sanmartin I. 2009. Tracing the impact of the Andean uplift on Neotropical plant evolution. Proceedings of the National Academy of Sciences of the USA 106: 9749-9754.
  • Branstetter MG, Danforth BN, Pitts JP, Faircloth BC, Ward PS, Buffington ML, Gates MW, Kula RR, Brady SG. 2017. Phylogenomic insights into the evolution of stinging wasps and the origins of ants and bees. Current Biology 27: 1019-1025.
  • Brower AV, Garzon-Orduna IJ. 2020. Contrasting patterns of temporal diversification in Neotropical butterflies: an overview. In: Rull V, Carnaval AC, eds. Neotropical diversification: patterns and processes. Switzerland, AG: Springer, 189-222.
  • Brown JM, Lemmon AR. 2007. The importance of data partitioning and the utility of Bayes factors in Bayesian phylogenetics. Systematic Biology 56: 643-655.
  • Cardinal S, Buchmann SL, Russell AL. 2018. The evolution of floral sonication, a pollen foraging behavior used by bees (Anthophila). Evolution 72: 590-600.
  • Cardinal S, Danforth BN. 2013. Bees diversified in the age of eudicots. Proceedings of the Royal Society B: Biological Sciences 280: 20122686.
  • Celis CJ, Cure JR. 2017. Phylogeny and taxonomic classification to subgeneric level of Augochloropsis (Hymenoptera: Halictidae). Revista de Biologia Tropical 65: 1277-1306.
  • Chazot N, Willmott KR, Lamas G, Freitas AV, Piron - Prunier F, Arias CF, Mallet J, De-Silva DL, Elias M. 2019. Renewed diversification following Miocene landscape turnover in a Neotropical butterfly radiation. Global Ecology and Biogeography 28: 1118-1132.
  • Clarke JA, Middleton KM. 2008. Mosaicism, modules, and the evolution of birds: results from a Bayesian approach to the study of morphological evolution using discrete character data. Systematic Biology 57: 185-201.
  • Danforth BN, Brady SG, Sipes SD, Pearson A. 2004. Singlecopy nuclear genes recover Cretaceous-age divergences in bees. Systematic Biology 55: 309-326.
  • Danforth BN, Eardley C, Packer L, Walker PA, Randrianambinintsoa FJ. 2008. Phylogeny of Halictidae with an emphasis on endemic African Halictinae. Apidologie 39: 86-101.
  • Danforth BN, Eickwort GC. 1997. The evolution of social behaviour in the Augochlorini sweat bees (Hymenoptera: Halictidae) based on a phylogenetic analysis of the genera. In: Choe JC, Crespi BJ, eds. The evolution of social behaviour in insects and arachnids. Cambridge: Cambridge University Press, 270-292.
  • Deans AR, Miko I , Wipfler B, Friedrich F. 2012. Evolutionary phenomics and the emerging enlightenment of arthropod systematics. Invertebrate Systematics 26: 323-330.
  • Eickwort GC. 1969. A comparative morphological study and generic revision of the augochlorine bees (Hymenoptera: Halictidae). University of Kansas Science Bulletin 48: 325-524.
  • Engel MS. 1995. Neocorynura electra, a new fossil bee species from Dominican amber (Hymenoptera: Halictidae). Journal of the New York Entomological Society 103: 317-323.
  • Engel MS. 1996. New augochlorine bees (Hymenoptera: Halictidae) in Dominican amber, with a brief review of fossil Halictidae. Journal of the Kansas Entomological Society 69: 334-345.
  • Engel MS. 1997. A new fossil bee from the Oligo-Miocene Dominican amber (Hymenoptera: Halictidae). Apidologie 28: 97-102.
  • Engel MS. 2000. Classification of the bee tribe Augochlorini (Hymenoptera: Halictidae). Bulletin of the American Museum of Natural History 250: 1-90.
  • Engel MS. 2001. A monograph of the Baltic amber bee and evolution of the Apoidea (Hymenoptera). Bulletin of the American Museum of Natural History 259: 1-192.
  • Engel MS. 2019. A new genus of augochlorine bees from northern Venezuela (Hymenoptera: Halictidae). Journal of Melittology 87: 1-15.
  • Engel MS. 2020. On the subgeneric placement of Megalopta atra (Hymenoptera: Halictidae). Entomologist's Monthly Magazine 156: 19-24.
  • Engel MS, Rightmyer MG. 2000. A new augochlorine bee species in Tertiary amber from the Dominican Republic (Hymenoptera: Halictidae). Apidologie 31: 431-436.
  • Gavryushkina A, Heath TA, Ksepka DT, Stadeler T, Welch D, Drummond AJ. 2017. Bayesian total-evidence dating reveals the recent crown radiation of penguins. Systematic Biology 66: 57-73.
  • Gibbs J,Brady SG, Kanda K, Danforth BN. 2012. Phylogeny of halictine bees supports a shared origin of eusociality for Halictus and Lasioglossum (Apoidea: Anthophila: Halictidae). Molecular Phylogenetics and Evolution 65: 926-939.
  • Goloboff P, Farris S, Nixon K. 2008. TNT, a free program for phylogenetic analysis. Cladistics 24: 774-786.
  • Goncalves RB. 2016. A molecular and morphological phylogeny of the extant Augochlorini (Hymenoptera, Apoidea) with comments on implications for biogeography. Systematic Entomology 41: 430-440.
  • Goncalves RB. 2017. Phylogeny and new species of the Neotropical bee genus Paroxystoglossa Moure (Hymenoptera , Apoidea ). Revista Brasileira de Entomologia 61: 178-191.
  • Goncalves RB. 2019. Phylogeny of the Augochlora clade with the description of four new species (Hymenoptera, Apoidea). Revista Brasileira de Entomologia 63: 91-100.
  • Goncalves RB, Melo GAR. 2005. A comunidade de abelhas (Hymenoptera, Apidae s.l.) em uma area restrita de campo natural no Parque Estadual de Vila Velha, Parana: diversidade, fenologia e fontes florais de alimento. Revista Brasileira de Entomologia 49: 557-571.
  • Goncalves RB, Melo GAR. 2010. Phylogeny of the bee subtribe Caenohalictina Michener (Hymenoptera, Apidae s.l., Halictinae s.l.). Zoologica Scripta 39: 187-197.
  • Gonzalez VH, Gustafson GT, Engel MS. 2019. Morphological phylogeny of Megachilini and the evolution of leaf-cutter behavior in bees (Hymenoptera: Megachilidae). Journal of Melittology 85: 1-123.
  • Gonzalez-Vaquero RA, Roig-Alsina AH. 2017. Phylogeny of the Corynura group, an endemic southern South American clade sister to all other Augochlorini bees (Hymenoptera: Halictidae), and a revision of Corynura. Arthropod Systematics & Phylogeny 75: 435-479.
  • Heath TA, Huelsenbeck JP, Stadler T. 2014. The fossilized birth-death process for coherent calibration of divergencetime estimates. Proceedings of the National Academy of Sciences of the USA 111: E2957-E2966.
  • Hoorn C, Wesselingh FP, Ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartin I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Sarkinen T, Antonelli A. 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330: 927-931.
  • Iturralde-Vinent MA. 2006. Meso-Cenozoic Caribbean paleogeography: implications for the historical biogeography of the region. International Geology Review 48: 791-827.
  • Iturralde-Vinent MA, MacPhee RDE. 1996. Age and paleogeographical origin of Dominican amber. Science 273: 1850-1852.
  • Jaramillo C, Ochoa D, Contreras L, Pagani M, Carvajal- Ortiz H, Pratt LM, Krishnan S, Cardona A, Romero M, Quiroz L, Rodriguez G, Rueda MJ, de la Parra F, Moron S, Green W, Bayona G, Montes C, Quintero O, Ramirez R, Mora G, Schouten S, Bermudez H, Navarrete R, Parra F, Alvaran M, Osorno J, Crowley JL, Valencia V, Vervoort J. 2010. Effects of rapid global warming at the Paleocene-Eocene boundary on Neotropical vegetation. Science 330: 957-961.
  • Jaramillo C, Romero I, D'Apolito C, Bayona G, Duarte E, Louwye S, Escobar J, Luque J, Carrillo-Briceno JD, Zapata V, Mora A, Schouten S, Zavada M, Harrington G, Ortiz J, Wesselingh FP. 2017. Miocene flooding events of western Amazonia. Science Advances 3: e1601693.
  • Kainer D, Lanfear R. 2015. The effects of partitioning on phylogenetic inference. Molecular Biology and Evolution 32: 1611-1627.
  • Kass RE, Raftery AE. 1995. Bayes factors. Journal of the American Statistical Association 18: 773-795.
  • Katoh K, Asimenos G, Toh H. 2009. Multiple alignment of DNA with MAFFT. Methods Molecular Biology 537: 39-64.
  • King B, Qiao T, Lee MSY, Zhu M, Long JA. 2017. Bayesian morphological clock methods resurrect placoderm monophyly and reveal rapid early evolution in jawed vertebrates. Systematic Biology 66: 499-516.
  • Landis MJ, Matzke NJ, Moore BR, Huelsenbeck JP. 2013. Bayesian analysis of biogeography when the number of areas is large. Systematic Biology 62: 789-804.
  • Lee MSY, Cau A, Naish D, Dyke GJ. 2014. Morphological clocks in paleontology, and a Mid-Cretaceous origin of crown Aves. Systematic Biology 63: 442-449.
  • Lee MSY, Palci A. 2015. Morphological phylogenetics in the genomic age. Current Biology 25: R922-R929.
  • Luebert F, Lorch M, Acuna R, Mello-Silva R, Weigend M, Mutke J. 2020. Clade-specific biogeographic history and climatic niche shifts of the southern Andean-southern Brazilian disjunction in plants. In: Rull V, Carnaval AC,
  • Lundberg JG, Marshall LG, Guerrero J, Horton B, Malabarba MCSL, Wesselingh F. 1998. The stage for Neotropical fish diversification: a history of Tropical South American rivers. Phylogeny and Classification of Neotropical Fishes 27: 13-48.
  • Martins AC, Luz DR, Melo GAR. 2018. Palaeocene origin of the Neotropical lineage of cleptoparasitic bees Ericrocidini- Rhathymini (Hymenoptera, Apidae). Systematic Entomology 43: 510-521.
  • Martins AC, Melo GAR, Renner SS. 2014. The corbiculate bees arose from New World oil-collecting bees: implications for the origin of pollen baskets. Molecular Phylogenetics and Evolution 80: 88-94.
  • Martins AC, Melo GAR. 2015. The New World oil-collecting bees Centris and Epicharis (Hymenoptera, Apidae): molecular phylogeny and biogeographic history. Zoologica Scripta 45: 22-33.
  • Matzke NJ. 2013a. BioGeoBEARS: BioGeography with Bayesian (and likelihood) evolutionary analysis in R Scripts. R package, version 0.2, 1, 2013. Available at: https://rdrr.io/ cran/BioGeoBEARS/
  • Matzke NJ. 2013b. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers of Biogeography 5: 242-248.
  • Matzke NJ. 2014. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Systematic Biology 63: 951-970.
  • Meira OM, Goncalves RB. 2018. The relevance of the mesosomal internal structures to the phylogeny of Augochlorini bees (Hymenoptera: Halictinae). Zoologica Scripta 47: 197-205.
  • Melo GAR, Goncalves RB. 2005. Higher-level bee classifications (Hymenoptera, Apoidea, Apidae sensu lato). Revista Brasileira de Zoologia 22: 153-159.
  • Melo GAR, Faria LRR, Santos LM. 2019. Xenochlora meridionalis sp. nov. (Hymenoptera: Apidae), a new halictine bee from eastern Brazil as evidence of past connections between Amazonia and Atlantic Forest. Zoologia (Curitiba) 36. doi:10.3897/zoologia.36.e33805.
  • Michener CD. 1944. Comparative external morphology, phylogeny, and a classification of the bees (Hymenoptera). Bulletin of the American Museum of Natural History 82: 151-326.
  • Michener CD. 1979. Biogeography of the bees. Annals of the Missouri Botanical Garden 66: 277-347.
  • Michener CD. 2007. The bees of the world, 2nd edn. Baltimore: Johns Hopkins University Press.
  • Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans. GCE, 1-8.
  • Morrone JJ. 2014. Biogeographical regionalisation of the Neotropical region. Zootaxa 3782: 1-110.
  • Morrone JJ. 2017. Neotropical biogeography: regionalization and evolution. Boca Raton: CRC Press.
  • Morrone JJ. 2018. Evolutionary biogeography of the Andean region. Boca Raton: CRC Press.
  • Moure JS. 2012. Augochlorini Beebe, 1925. In: Moure JS, Urban D, Melo GAR, organizers. Catalogue of bees (Hymenoptera, Apoidea) in the Neotropical Region - online version. Available at: http://moure.cria.org.br/. Accessed 15 February 2021.
  • Nihei SS, Carvalho CJB. 2007. Systematics and biogeography of Polietina Schnabl & Dziedzicki (Diptera, Muscidae): Neotropical area relationships and Amazonia as a composite area. Systematic Entomology 32: 477-501.
  • Nylander JAA, Ronquist F, Huelsenbeck J, Nieves- Aldrey JL. 2004. Bayesian phylogenetic analysis of combined data. Systematic Biology 53: 47-67.
  • Ortiz-Jaureguizar E,Cladera GA. 2006. Paleoenvironmental evolution of southern South America during the Cenozoic. Journal of Arid Environments 66: 498-532.
  • Packer L. 2003. Comparative morphology of the skeletal parts of the sting apparatus of bees (Hymenoptera: Apoidea). Zoological Journal of the Linnean Society 138: 1-38.
  • Pesenko YA. 1999. Phylogeny and classification of the family Halictidae revised (Hymenoptera: Apoidea). Journal of the Kansas Entomological Society 72: 104-123.
  • Pesenko YA. 2004. The phylogeny and classification of the tribe Halictini, with special reference to the Halictus genus group (Hymenoptera: Halictidae). Zoosystematica Rossica 13: 83-113.
  • Peters RS, Krogmann L, Mayer C, Donath A, Gunkel S, Meusemann K, Kozlov A, Podsiadlowski L, Petersen M, Lanfear R, Diez PA, Heraty J, Kjer KM, Klopfstein S, Meier R, Polidori C, Schmitt T, Liu S, Zhou X, Wappler T, Rust J, Misof B, Niehuis O. 2017. Evolutionary history of the hymenoptera. Current Biology 27: 1013-1018.
  • Porto DS, Almeida EAB. 2019. A comparative study of the pharyngeal plate of Apoidea (Hymenoptera: Aculeata), with implications for the understanding of phylogenetic relationships of bees. Arthropod Structure & Development 50: 64-77.
  • Porto DS, Melo GAR, Almeida EAB. 2016a. Clearing and dissecting insects for internal skeletal morphological research with particular reference to bees. Revista Brasileira de Entomologia 60: 109-113.
  • Porto DS, Almeida EAB, Vilhelmsen L. 2016 b. Comparative morphology of internal structures of the mesosoma of bees with an emphasis on the corbiculate clade (Apidae: Apini). Zoological Journal of the Linnean Society 179: 303-337.
  • Porto DS, Vilhelmsen L, Almeida EAB. 2016c. Comparative morphology of the mandibles and head structures of corbiculate bees (Hymenoptera: Apidae: Apini). Systematic Entomology 41: 339-368.
  • Pyron RA. 2017. Novel approaches for phylogenetic inference from morphological data and total-evidence dating in squamate reptiles (lizards, snakes, and amphisbaenians). Systematic Biology 66: 38-56.
  • R Core Team. 2016. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
  • Rambaut A, Suchard M, Drummond A. 2013. Tracer 1.6. Available at: http://tree.bio.ed.ac.uk/software/tracer/
  • Ramos VA. 2009. Anatomy and global context of the Andes: main geologic features and the Andean orogenic cycle. In: Kay SM, Ramos VA, Dickinson WR, eds. Backbone of the Americas: shallow subduction, plateau uplift, and ridge and terrane collision, Vol. 204. Washington, DC: Geological Society of America Memoir, 31-65.
  • Ree RH, Sanmartin I. 2018. Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. Journal of Biogeography 45: 741-749.
  • Ree RH, Smith SA. 2008. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology 57: 4-14.
  • Roig-Alsina A, Michener CD. 1993. Studies of the phylogeny and classification of long-tongued bees (Hymenoptera: Apoidea). University of Kansas Science Bulletin 55: 123-173.
  • Roig-Junent S, Coscaron S. 2001. Biogeographical history of the Neotropical and Neantarctic Simuliidae (Diptera). Revista del Museo Argentino de Ciencias Naturales 3: 119-134.
  • Roncal J, Nieto-Blazquez ME, Cardona A, Bacon CD. 2020. Historical biogeography of Caribbean plants revises regional paleogeography. In: Rull V, Carnaval AC, eds. Neotropical diversification: patterns and processes. Switzerland AG: Springer, 521-546.
  • Ronquist F, Huelsenbeck J, Teslenko M. 2011. MrBayes version 3.2 manual: tutorials and model summaries, 1-103. Available at: http://mrbayes.sourceforge.net/
  • Ronquist F, Klopfstein S, Vilhelmsen L, Schulmeister S, Murray DL, Rasnitsyn AP. 2012a. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Systematic Biology 61: 973-999.
  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012b. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539-542.
  • Ronquist F. 1997. Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Systematic Biology 46: 195.
  • Rosa BB, Melo GAR, Barbeitos MS. 2019. Homoplasy-based partitioning outperforms alternatives in Bayesian analysis of discrete morphological data. Systematic Biology 68: 657-671.
  • Sann M, Niehuis O, Peters RS, Mayer C, Kozlov A, Podsiadlowski L, Bank S, Meusemann K, Misof B, Bleidorn C, Ohl M. 2018. Phylogenomic analysis of Apoidea sheds new light on the sister group of bees. BMC Evolutionary Biology 18: 1-15.
  • Santos JC, Coloma LA, Summers K, Caldwell JP, Ree R, Cannatella DC. 2019. Amazonian amphibian diversity is primarily derived from Late Miocene Andean lineages. PLoS Biology 7: e1000056.
  • Santos LM. 2010. Analise cladistica das abelhas do genero Megalopta S mith, 1853 (Apidae: Halictinae: Augochlorini) e revisao taxonomica das especies brasileiras. Unpublished Master's Dissertation, Curitiba, Brazil: Universidade Federal do Parana.
  • Santos LM. 2014. Analise cladistica das abelhas do genero Augochloropsis Cockerell, 1897 (Hymenoptera: Apidae s.l.: Augochlorini). Unpublished Ph.D. Thesis, Curitiba, Brazil: Universidade Federal do Parana.
  • Santos LM, Melo GAR. 2014. Updating the taxonomy of the bee genus Megalopta (Hymenoptera: Apidae, Augochlorini) including revision of the Brazilian species. Journal of Natural History 49: 575-674.
  • Sinn BT, Kelly LM, Freudenstein JV. 2015. Phylogenetic relationships in Asarum: effect of data partitioning and a revised classification. American Journal of Botany 102: 765-779.
  • Smith-Pardo AH. 2005. A new species of Neocorynura from Ecuador (Hymenoptera: Halictidae), with notes on taxonomy of the genus. Zootaxa 1051: 55-64.
  • Tarasov S, Genier F. 2015. Innovative Bayesian and parsimony phylogeny of dung beetles (Coleoptera, Scarabaeidae, Scarabaeinae) enhanced by ontology-based partitioning of morphological characters. PLoS One 10: e0116671.
  • Tierney SM, Sanjur O, Grajales GG, Santos LM, Bermingham E, Wcislo WT. 2012. Photic niche invasions: phylogenetic history of the dim-light foraging augochlorine bees (Halictidae). Proceedings of the Royal Society series B, Biological Sciences 279: 794-803.
  • Toussaint EF, Dias FM, Mielke OH, Casagrande MM, Sanudo-Restrepo CP, Lam A, Moriniere J, Balke M, Vila, R. 2019. Flight over the Proto-Caribbean seaway: phylogeny and macroevolution of Neotropical Anaeini leafwing butterflies.Molecular Phylogenetics and Evolution 137: 86-103.
  • Vaidya G, Lohman DJ, Meier R. 2011. SequenceMatrix: concatenation software for the fast assembly of multi- gene datasets with character set and codon information. Cladistics 27: 171-180.
  • Xie W, Lewis PO, Fan Y, Kuo L, Chen MH. 2011. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology 60: 150-160.