Published May 31, 2022 | Version v1
Journal article Open

Numerical modeling and experimental evaluation of machining parameters for 2-dimensions ultrasonic-assisted micro-milling at low and high-speed machining

  • 1. Universitas Indonesia
  • 2. Yeungnam University

Description

Vibration assisted machining (VAM) is one of the hybrid machining processes for improving the machined surface quality. VAM performance is mainly influenced by the combination of machining and vibration control parameters, where surface roughness value (Ra) became the benchmarking indicator. It is difficult to determine the optimum parameter combination to produce high precision products, especially for micro-milling, due to the interconnected correlation among parameters. The benefits of high-speed machining with VAM are high material removal rate and shorter machining time than low-speed machining. VAM operation at high-speed machining is still limited due to the high possibility of chatter occurrence. Therefore, this research aims to evaluate the 2D VAM resonant performance at low-speed and high-speed machining, operated at ultrasonic vibration and amplitude below one μm. The mathematical model and experimental evaluate the vibration effect based on machining mode, amplitude, and spindle speed variation. The mathematical modelling and experiment result complement each other, where the mathematical model can characterize the effect of resonant vibration, amplitude, and spindle speed increment on the tool path trajectory. The 2D resonant vibration at the feed direction causes interrupting cutting and transforms the tool path trajectory from linear to wavy. The mathematical model and experiment result show the dominant influence of spindle speed and feed rate on the toolpath trajectory and Ra, where low spindle speed and feed rate result in better machine surface roughness. The low-speed machining with VAM results in Ra value between 0.1–0.155 μm, which is below the high-speed machining result, between 0.2–0.38 μm

Files

Numerical modeling and experimental evaluation of machining parameters for 2-dimensions ultrasonic-assisted micro-milling at low and high-speed machining_zenodo.pdf

Additional details

References

  • Zariatin, D. L., Kiswanto, G., Ko, T. J. (2017). Investigation of the micro-milling process of thin-wall features of aluminum alloy 1100. The International Journal of Advanced Manufacturing Technology, 93 (5-8), 2625–2637. doi: https://doi.org/10.1007/s00170-017-0514-8
  • Kurniawan, R., Kiswanto, G., Ko, T. J. (2016). Micro-dimple pattern process and orthogonal cutting force analysis of elliptical vibration texturing. International Journal of Machine Tools and Manufacture, 106, 127–140. doi: https://doi.org/10.1016/j.ijmachtools.2016.03.007
  • Rahman, R. A., Suwandi, A., Nurtanto, M. (2021). Experimental investigation on the effect of thermophysical properties of a heat transfer fluid on pumping performance for a convective heat transfer system. Journal of Thermal Engineering, 7 (7), 1628–1639. doi: https://doi.org/10.18186/thermal.1025910
  • Jin, X., Xie, B. (2015). Experimental study on surface generation in vibration-assisted micro-milling of glass. The International Journal of Advanced Manufacturing Technology, 81 (1-4), 507–512. doi: https://doi.org/10.1007/s00170-015-7211-2
  • Chern, G.-L., Chang, Y.-C. (2006). Using two-dimensional vibration cutting for micro-milling. International Journal of Machine Tools and Manufacture, 46 (6), 659–666. doi: https://doi.org/10.1016/j.ijmachtools.2005.07.006
  • Li, K.-M., Wang, S.-L. (2013). Effect of tool wear in ultrasonic vibration-assisted micro-milling. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 228 (6), 847–855. doi: https://doi.org/10.1177/0954405413510514
  • Rahmalina, D., Rahman, R. A., Ismail (2022). Improving the phase transition characteristic and latent heat storage efficiency by forming polymer-based shape-stabilized PCM for active latent storage system. Case Studies in Thermal Engineering, 31, 101840. doi: https://doi.org/10.1016/j.csite.2022.101840
  • Rahmalina, D., Adhitya, D. C., Rahman, R. A., Ismail, I. (2021). Improvement the performance of composite PCM paraffin-based incorporate with volcanic ash as heat storage for low-temperature application. EUREKA: Physics and Engineering, 1, 53–61. doi: https://doi.org/10.21303/2461-4262.2022.002055
  • Kumar, M. N., Subbu, S. K., Krishna, P. V., Venugopal, A. (2014). Vibration Assisted Conventional and Advanced Machining: A Review. Procedia Engineering, 97, 1577–1586. doi: https://doi.org/10.1016/j.proeng.2014.12.441
  • Zhang, Y., Zhao, B., Wang, Y., Chen, F. (2017). Effect of machining parameters on the stability of separated and unseparated ultrasonic vibration of feed direction assisted milling. Journal of Mechanical Science and Technology, 31 (2), 851–858. doi: https://doi.org/10.1007/s12206-017-0137-x
  • Kurniawan, R., Ko, T. J., Ping, L. C., Kumaran, S. T., Kiswanto, G., Guo, P., Ehmann, K. F. (2017). Development of a two-frequency, elliptical-vibration texturing device for surface texturing. Journal of Mechanical Science and Technology, 31 (7), 3465–3473. doi: https://doi.org/10.1007/s12206-017-0635-x
  • Suzuki, H., Marshall, M., Sims, N., Dwyer-Joyce, R. (2016). Design and implementation of a non-resonant vibration-assisted machining device to create bespoke surface textures. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 231 (5), 860–875. doi: https://doi.org/10.1177/0954406215625087
  • Kiswanto, G., Poly, Johan, Y. R., Ko, T. J., Kurniawan, R. (2019). Development of Langevin Piezoelectric Transducer-based Two Dimensional Ultrasonic Vibration Assisted Machining (2D UVAM) on 5-axis Micro-milling Machine. IOP Conference Series: Materials Science and Engineering, 654 (1), 012015. doi: https://doi.org/10.1088/1757-899x/654/1/012015
  • Li, G., Wang, B., Xue, J., Qu, D., Zhang, P. (2018). Development of vibration-assisted micro-milling device and effect of vibration parameters on surface quality and exit-burr. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 233 (6), 1723–1729. doi: https://doi.org/10.1177/0954405418774592
  • Kiswanto, G., Libyawati, W. (2019). Fundamental Aspects in Designing Vibration Assisted Machining: A Review. IOP Conference Series: Materials Science and Engineering, 494, 012095. doi: https://doi.org/10.1088/1757-899x/494/1/012095
  • Brehl, D. E., Dow, T. A. (2008). Review of vibration-assisted machining. Precision Engineering, 32 (3), 153–172. doi: https://doi.org/10.1016/j.precisioneng.2007.08.003
  • Ding, H., Chen, S.-J., Cheng, K. (2010). Dynamic surface generation modeling of two-dimensional vibration-assisted micro-end-milling. The International Journal of Advanced Manufacturing Technology, 53 (9-12), 1075–1079. doi: https://doi.org/10.1007/s00170-010-2903-0
  • Ding, H., Ibrahim, R., Cheng, K., Chen, S.-J. (2010). Experimental study on machinability improvement of hardened tool steel using two dimensional vibration-assisted micro-end-milling. International Journal of Machine Tools and Manufacture, 50 (12), 1115–1118. doi: https://doi.org/10.1016/j.ijmachtools.2010.08.010
  • Ding, H., Chen, S. J., Cheng, K. (2010). Two Dimensional Vibration-Assisted Micro-Milling: Kinematics Simulation, Chip Thickness Computation and Analysis. Advanced Materials Research, 97-101, 2779–2784. doi: https://doi.org/10.4028/www.scientific.net/amr.97-101.2779
  • Kim, G. D., Loh, B. G. (2011). Direct machining of micro patterns on nickel alloy and mold steel by vibration assisted cutting. International Journal of Precision Engineering and Manufacturing, 12 (4), 583–588. doi: https://doi.org/10.1007/s12541-011-0075-y
  • Zheng, L., Chen, W., Huo, D. (2020). Review of vibration devices for vibration-assisted machining. The International Journal of Advanced Manufacturing Technology, 108 (5-6), 1631–1651. doi: https://doi.org/10.1007/s00170-020-05483-8
  • Feng, Y., Hsu, F.-C., Lu, Y.-T., Lin, Y.-F., Lin, C.-T., Lin, C.-F. et. al. (2020). Surface roughness prediction in ultrasonic vibration-assisted milling. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 14 (4), JAMDSM0063–JAMDSM0063. doi: https://doi.org/10.1299/jamdsm.2020jamdsm0063
  • Yang, Z., Zhu, L., Zhang, G., Ni, C., Lin, B. (2020). Review of ultrasonic vibration-assisted machining in advanced materials. International Journal of Machine Tools and Manufacture, 156, 103594. doi: https://doi.org/10.1016/j.ijmachtools.2020.103594
  • Zhu, L., Ni, C., Yang, Z., Liu, C. (2019). Investigations of micro-textured surface generation mechanism and tribological properties in ultrasonic vibration-assisted milling of Ti–6Al–4V. Precision Engineering, 57, 229–243. doi: https://doi.org/10.1016/j.precisioneng.2019.04.010
  • Shen, X. H., Shi, Y. L., Zhang, J. H., Zhang, Q. J., Tao, G. C., Bai, L. J. (2020). Effect of process parameters on micro-textured surface generation in feed direction vibration assisted milling. International Journal of Mechanical Sciences, 167, 105267. doi: https://doi.org/10.1016/j.ijmecsci.2019.105267
  • Zheng, L., Chen, W., Huo, D. (2020). Investigation on the Tool Wear Suppression Mechanism in Non-Resonant Vibration-Assisted Micro Milling. Micromachines, 11 (4), 380. doi: https://doi.org/10.3390/mi11040380
  • Chen, W., Zheng, L., Teng, X., Yang, K., Huo, D. (2019). Finite element simulation and experimental investigation on cutting mechanism in vibration-assisted micro-milling. The International Journal of Advanced Manufacturing Technology, 105 (11), 4539–4549. doi: https://doi.org/10.1007/s00170-019-03402-0
  • Chen, W., Huo, D., Hale, J., Ding, H. (2018). Kinematics and tool-workpiece separation analysis of vibration assisted milling. International Journal of Mechanical Sciences, 136, 169–178. doi: https://doi.org/10.1016/j.ijmecsci.2017.12.037
  • Shen, X.-H., Xu, G.-F. (2017). Study of milling force variation in ultrasonic vibration-assisted end milling. Materials and Manufacturing Processes, 33 (6), 644–650. doi: https://doi.org/10.1080/10426914.2017.1364846
  • Liu, X., Wang, W., Jiang, R., Xiong, Y., Lin, K., Li, J. (2020). Investigation on surface roughness in axial ultrasonic vibration–assisted milling of in situ TiB2/7050Al MMCs. The International Journal of Advanced Manufacturing Technology, 111 (1-2), 63–75. doi: https://doi.org/10.1007/s00170-020-06081-4