Report Open Access
Farré-Maduell, Eulàlia;
Lima, Salvador;
Gascó, Luis;
Miranda-Escalada, Antonio;
Krallinger, Martin
Please, cite us:
Luis Gasco Sánchez, Darryl Estrada Zavala, Eulàlia Farré-Maduell, Salvador Lima-López, Antonio Miranda-Escalada, and Martin Krallinger. 2022. The SocialDisNER shared task on detection of disease mentions in health-relevant content from social media: methods, evaluation, guidelines and corpora. In Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task, pages 182–189, Gyeongju, Republic of Korea. Association for Computational Linguistics.
@inproceedings{gasco2022socialdisner,
title = "The {S}ocial{D}is{NER} shared task on detection of disease mentions in health-relevant content from social media: methods, evaluation, guidelines and corpora",
author = "Gasco S{\'a}nchez, Luis and
Estrada Zavala, Darryl and
Farr{\'e}-Maduell, Eul{\`a}lia and
Lima-L{\'o}pez, Salvador and
Miranda-Escalada, Antonio and
Krallinger, Martin",
booktitle = "Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop {\&} Shared Task",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.smm4h-1.48",
pages = "182--189"
}
SocialDisNER Annotation Guidelines:
These guidelines describe the annotation and standardization process of the SocialDisNER corpus, a collection of 9,500 tweets written in Spanish by patients and medical professionals annotated with disease mentions.
SocialDisNER resources:
For further information, please visit https://temu.bsc.es/socialdisner/ or email us at encargo-pln-life@bsc.es
Name | Size | |
---|---|---|
Guías SocialDisNER v1.pdf
md5:993be16b24698cc620be40a1a5cd9dd6 |
675.6 kB | Download |
All versions | This version | |
---|---|---|
Views | 171 | 171 |
Downloads | 107 | 107 |
Data volume | 72.3 MB | 72.3 MB |
Unique views | 144 | 144 |
Unique downloads | 100 | 100 |