Published July 25, 2022 | Version 3
Dataset Open

Potential and realized distribution at 30m for Silver fir (Abies alba) in Europe for 2000 - 2020

  • 1. OpenGeoHub foundation
  • 2. Institute for Geoinformatics, Münster
  • 3. University of Bremen
  • 4. Wageningen University & Research

Description

Probability and uncertainty maps showing the potential and realized distribution for the silver fir (Abies alba, Mill.) for Europe from the dataset prepared by Bonannella et al. (2022) and predicted using Ensemble Machine Learning (EML). Potential distribution map cover the period 2018 - 2020; realized distribution cover the period 2000 - 2020, split in the following time periods:

  • 2000 - 2002,
  • 2002 - 2006,
  • 2006 - 2010,
  • 2010 - 2014,
  • 2014 - 2018,
  • 2018 - 2020.

Files are named according to the following naming convention, e.g:

  • veg_abies.alba_anv.eml_md_30m_0..0cm_2000..2002_eumap_epsg3035_v0.3

with the following fields:

  • theme: e.g. veg,
  • species code: e.g. abies.alba,
  • species distribution type: e.g. anv (= actual natural vegetation),
  • species estimation method: e.g. eml,
  • species estimation type: e.g. md ( = model deviation),
  • resolution in meters e.g. 30m,
  • reference depths (vertical dimension): e.g. 0..0cm,
  • reference period begin end: e.g. 2000..2002,
  • reference area: e.g. eumap,
  • coordinate system: e.g. epsg3035,
  • data set version: e.g. v0.3.

For each species is then easy to identify probability and uncertainty distribution maps:

  • veg_abies.alba_anv.eml_md: model uncertainty for realized distribution
  • veg_abies.alba_anv.eml_p: probability for realized distribution
  • veg_abies.alba_pnv.eml_md: model uncertainty for potential distribution
  • veg_abies.alba_pnv.eml_p: probability for potential distribution

Files are provided as Cloud Optimized GeoTIFFs and projected in the Coordinate Reference System ETRS89 / LAEA Europe (= EPSG code 3035). Styling files are provided in both SLD and QML format.

If you would like to know more about the creation of the maps and the modeling:

  • watch the talk at Open Data Science Workshop 2021 (TIB AV-PORTAL)
  • access the repository with our R/Python scripts and follow the instructions (GitLab)
  • access the repository with the training dataset (Zenodo)
  • read the tutorial with executable code on our GitBook

A publication describing, in detail, all processing steps, accuracy assessment and general analysis of species distribution maps is available on PeerJ. To suggest any improvement/fix use https://gitlab.com/geoharmonizer_inea/spatial-layers/-/issues.

Notes

This work is co-financed under Grant Agreement Connecting Europe Facility (CEF) Telecom project 2018-EU-IA-0095 by the European Union (https://ec.europa.eu/inea/en/connecting-europe-facility/cef-telecom/2018-eu-ia-0095).

Files

00-preview_abies.alba.png

Files (14.6 GB)

Name Size Download all
md5:5f77c3fc03b824fb444421c72df8a2d9
1.8 MB Preview Download
md5:76dd630186fa43d5e4c4fe4a3458e4d2
3.0 kB Download
md5:18509fdeac2e896d3e2886fef17ceda1
1.3 kB Download
md5:24c1db0c64281275c467ef9e1ebaa338
1.6 GB Preview Download
md5:be3c3e6de157fe796e51cab814eef461
1.3 GB Preview Download
md5:4ce5233b2fae1bb3d9f40c8f12f0e0e0
1.3 GB Preview Download
md5:8c883901cab0a209a9d29e0a66bc1de9
1.3 GB Preview Download
md5:1bce41589f5d650a6ff20b31217825a1
1.2 GB Preview Download
md5:a3abd7a49f121af0804a95aab5a82bfb
1.3 GB Preview Download
md5:1269a551595dc9f0057c17acd856abe5
3.0 kB Download
md5:dd81f380d2c8793b71a77bd3194693c6
1.3 kB Download
md5:814815424c3caa1c37441cc64b3e98c3
916.1 MB Preview Download
md5:66e16a05ce0484404f46839c6dd9e70e
663.0 MB Preview Download
md5:12d24b302ab455099737902007ea101c
706.2 MB Preview Download
md5:5e85714dd1af325d66f52aa239f1a9eb
669.0 MB Preview Download
md5:a28c8f102d6a78feb4c3c792a9483fd8
637.6 MB Preview Download
md5:815ec9e5c10ea076c32840632237f883
675.8 MB Preview Download
md5:76dd630186fa43d5e4c4fe4a3458e4d2
3.0 kB Download
md5:ae3ea628a1b838563a85eed4efa9aecb
1.3 kB Download
md5:8c08e397ce4ed8cc473eb660955efa74
1.5 GB Preview Download
md5:1269a551595dc9f0057c17acd856abe5
3.0 kB Download
md5:8f46e5468df78cb362461c031e6f65c3
1.3 kB Download
md5:f66268fd598a3d35a76ab41be537c4e0
835.1 MB Preview Download

Additional details

Related works

Is derived from
Dataset: 10.5281/zenodo.5818021 (DOI)