Published July 8, 2022 | Version v1
Journal article Open

Controlling gene expression with deep generative design of regulatory DNA

  • 1. National Institute of Biology
  • 2. Chalmers University of Technology

Description

Design of de novo synthetic regulatory DNA is a promising avenue to control gene expression in biotechnology and medicine. Using mutagenesis typically requires screening sizable random DNA libraries, which limits the designs to span merely a short section of the promoter and restricts their control of gene expression. Here, we prototype a deep learning strategy based on generative adversarial networks (GAN) by learning directly from genomic and transcriptomic data. Our ExpressionGAN can traverse the entire regulatory sequence-expression landscape in a gene-specific manner, generating regulatory DNA with prespecified target mRNA levels spanning the whole gene regulatory structure including coding and adjacent non-coding regions. Despite high sequence divergence from natural DNA, in vivo measurements show that 57% of the highly-expressed synthetic sequences surpass expression levels of highly-expressed natural controls. This demonstrates the applicability and relevance of deep generative design to expand our knowledge and control of gene expression regulation in any desired organism, condition or tissue.

Files

df_5utr_constructs_predictions.csv

Files (9.5 GB)

Name Size Download all
md5:a564c7a6fa609ef448eacd64b6b3f74c
36.5 MB Download
md5:882aef2b434a7b18a5222bb803ec6b63
354.6 kB Download
md5:3b68bf7a89dbae499dbc72684c838c0a
966.9 MB Preview Download
md5:f57784c3103fad18c3f6a34bc6c3086e
1.5 GB Preview Download
md5:58afd6dfb20a50ec27e9de8ebdee9ffb
305.2 MB Preview Download
md5:65aba4583d731aee7cc33b43ada17327
3.8 MB Preview Download
md5:aa37194bf77bfe40073b0a2496bfc2bb
7.6 kB Preview Download
md5:c69784787574f5521e504c356086b77a
468.9 kB Download
md5:a9931c74f99d91cea2983af1adf518c3
1.4 GB Preview Download
md5:78d869f2a024158faf97f7e1887ebcb0
31.3 kB Preview Download
md5:91235f51199f2c2e44fcd55cddb27a84
5.1 MB Download
md5:3692e1da367090406cd31663ffebacd8
20.2 MB Download
md5:4a9659d6977d043a1e805060dbb8670a
427.4 kB Download
md5:6c077a09f2a1a0ad8d80e679aad365ba
9.0 MB Download
md5:833f5aa5e3687d4b6264ae891de3fd60
5.3 kB Download
md5:90c3a8ecb97fcdae5e7ad01d7ff99780
200.0 MB Download
md5:88681776bff82c39130bd2c9bb61d644
196 Bytes Download
md5:a07c5d57e114b1bc7a8952f353ed3314
104.3 MB Download
md5:c0ad85e890f5e8996dca856e47ac269e
8.7 MB Preview Download
md5:e46264d48bbfa872c6e74f2d406988f4
9.3 kB Preview Download
md5:b81c2e233cfcdc7e691d9b3c419c19f6
5.1 kB Preview Download
md5:6796d5045810896b2967b568fe1bbc67
235.8 MB Preview Download
md5:a2cf4e482ecce0efb418bad25eb71f84
856.1 MB Preview Download
md5:170517c0b6be7ca0dccb05c85ef3d9bf
1.8 kB Download
md5:7513947e8ddf9e323321dedf72304145
51.3 MB Download
md5:af74d43f447dc9560a0fc04f30f9c802
4.2 MB Download
md5:72d6c8f82cc7413d1e89fdb71b051e01
328.8 MB Preview Download
md5:6f188a3f2cb19994a5de6f3bb4a4102b
2.7 GB Preview Download
md5:450f2b274f17b722b265854bf6c90642
18.2 MB Download
md5:57a69deecd490c839e25834587b63af6
2.1 MB Download
md5:339d9b3bd6d01590fb3ee58d187c3f12
552 Bytes Download
md5:0e365559cccca06e3a75287b345df70f
662.8 MB Preview Download
md5:10a13ca8e49e0268adf997e26614145f
1.9 MB Download
md5:23a0b17a87110b7036fcd44797a7badc
2.0 MB Preview Download
md5:dee8307bdbbf00417ec09b234b440864
2.5 MB Preview Download
md5:370952a25688b1ccb0730364e1a36e41
28.4 MB Preview Download
md5:764bcfe3bff0464ecf88fbb506bae6d6
3.6 MB Preview Download