Published June 24, 2022 | Version v1
Journal article Open

Monkeypox Virus Outbreaks and Poxvirus Infections: Transmission Routes and Epidemiological Characteristics

  • 1. Medical Microbiology Laboratory, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Türkiye.
  • 2. Department of Medical Microbiology, Gulhane Medical Faculty, University of Health Sciences, Ankara, Türkiye.

Description

Özet

İnsanlık tarihinde ortak mücadele ile ulaşılan bir başarı öyküsü olan çiçek virusunun eradikasyonu büyük bir tehdidi ortadan kaldırırken, etkenin (variola virus) zoonotik orijinli olmaması en önemli avantajdı. Dünya genelinde çiçek enfeksiyonlarının artık görülmüyor olması ve kapsamlı aşılama programlarının sonlandırılması küresel ortopoksvirus bağışıklığının her geçen gün azalmasına yol açmıştır. Dünya genelinde bağışık olmayan (poksviruslar için) bireylerin ve immünyetmezlikli (genel) hasta sayılarının giderek artıyor olması yeni riskleri de beraberinde getirmektedir. Çiçek hastalığına göre insanlarda daha hafif enfeksiyonlara neden olduğu bilinen maymun çiçeği virusunun (monkeypox virus, MPXV) pandemi potansiyeli olan 10 enfeksiyöz etkenden biri olarak görülmesi ve yayılım alanının genişleyebileceğine dair öngörüler, virüsün 2022 yılında neden olduğu salgının ardından dünya gündemine yerleşmesi ile gerçeklik kazanmıştır. Son birkaç yıl içerisinde yeni geliştirilen antiviral ilaçların ve aşıların onay alması, bazı ülkelerin bu değişime hazırlık yaptığını göstermektedir. Sağlık otoritelerince, MPXV enfeksiyonlarının insanlar arasında yayılım hızının düşük olduğu ve yeni bir pandemi riskinin söz konusu olmadığı ilan edilmiş olsa da, enfeksiyonun bulaş ve yayılma paternindeki değişikliklerin virüsü Afrika kıtasının dışına taşıması gerçeği, virüsün evcil hayvanlar aracılığı ile doğal yaşamdaki potansiyel rezervuar hayvanlara aktarılması ile kıta dışında yeni endemisite bölgelerinin oluşabileceğini göstermekte ve endişe kaynağı olmaya devam etmektedir. MPXV enfeksiyonlarının, bağışıklığı baskılanmış popülasyonlarda uzun bulaş zincirleri ile aktarılma olasılığı ise bir diğer önemli risk olarak değerlendirilmektedir. Artan vakaların büyüyen bir salgına dönüşme riski ve potansiyel biyogüvenlik tehditleri, koruyucu aşı ve tedavide kullanılacak antiviral ilaçların üretim, saklanma ve erişilebilirliği ile ilgili kaygıları da gündeme getirmiştir. Son MPXV salgınında gözlemlenen olağandışı insandan insana bulaş hızı, virüsün endemik bölgelerle bağlantılı olmaksızın çok sayıda ülkeye yayılımı ve diğer halk sağlığı riskleri dikkate alındığında, MPXV ve diğer poksvirus ilişkili insan ve hayvan enfeksiyonlarının izlenmesi, risk altındaki popülasyonun ve sağlık çalışanlarının bilgilendirilmesi ve diğer önleyici faaliyetlerin önemi açıkça görülmektedir.

Abstract

While the eradication of smallpox virus, which is a success story achieved through a common struggle in human history, eliminated a major threat, the most important advantage was that the agent (variola virus) was not of zoonotic origin. The absence of smallpox infections around the world and the termination of extensive vaccination programs have led to a decrease in global orthopoxvirus immunity day by day. The increasing number of non-immune (for poxviruses) individuals and immunocompromised (general) patients around the world brings along new risks. The predictions that monkeypox virus (MPXV), which is known to cause milder infections in humans compared to smallpox, is seen as one of the 10 infectious agents with pandemic potential, and its spread area may expand, became a reality with the virus placed on the world agenda with the last epidemic in 2022. The approval of newly developed antiviral drugs and vaccines in the last few years shows that some countries are preparing for this change. Although it has been declared by the health authorities that MPXV infections have a low rate of spread among humans and that there is no risk of a new pandemic, the fact that changes in the transmission and spread pattern of the infection carried the virus out of the African continent indicates that new endemic areas may be occur outside the continent, via transmission of the virus from domestic animals to potential reservoir animals in the wild life, continues to be a cause for concern. The spreading possibility of MPXV infections by long transmission chains in immunocompromised populations is considered as another important risk. The risk of increasing cases turning into a growing epidemic and potential biosecurity threats have also raised concerns about the production, storage, and accessibility of preventive vaccines and antiviral drugs to be used in treatment. Considering the unusual rate of human-to-human transmission observed in the recent MPXV outbreak, the spreading of the virus to multiple countries unrelated to endemic areas, and other public health risks; the importance of monitoring MPXV and other poxvirus-related human and animal infections, informing the population at risk and health care workers, and other preventive activities is clearly apparent.

Notes

Maymun Çiçeği Virusu Salgınları ve Poksvirus Enfeksiyonları: Bulaşma Yolları ve Epidemiyolojik Özellikler

Files

lms.2022.18.z.pdf

Files (1.9 MB)

Name Size Download all
md5:58fa7cf58c1a4dd664044036e5d93e8d
1.9 MB Preview Download

Additional details

References

  • ‎1. Strassburg MA. The global eradication of smallpox. Am J Infect Control 1982; 10(2): 53-9.
  • ‎2. Behbehani AM. The smallpox story: life and death of an old disease. Microbiol Rev 1983; 47(4): 455-509.
  • ‎3. Kozlov M. Monkeypox goes global: why scientists are on alert. Nature 2022; 606(7912): 15-6.
  • ‎4. Beer EM, Rao VB. A systematic review of the epidemiology of human monkeypox outbreaks and implications for ‎outbreak strategy. PLoS Negl Trop Dis 2019; 13(10): e0007791.
  • ‎5. Brown K, Leggat PA. Human Monkeypox: Current State of Knowledge and Implications for the Future. Trop Med ‎Infect Dis 2016; 1(1): 8.
  • ‎6. Mahase E. Monkeypox: What do we know about the outbreaks in Europe and North America? BMJ 2022; 377: o1274.
  • ‎7. Diven DG. An overview of poxviruses. J Am Acad Dermatol 2001; 44(1): 1-16.
  • ‎8. Jezek Z, Marennikova SS, Mutumbo M, Nakano JH, Paluku KM, Szczeniowski M. Human monkeypox: a study of 2,510 ‎contacts of 214 patients. J Infect Dis 1986; 154(4): 551-5.
  • ‎9. Reynolds MG, Damon IK. Smallpox. In: Quah SR (ed), International Encyclopedia of Public Health (2nd edition). 2017, ‎Elsevier-Academic Press, USA. pp. 524-33.
  • ‎10. Burrell CJ, Howard CR, Murphy FA (eds). Poxviruses (Chapter 16). In: Fenner and White's Medical Virology (5th ‎edition). 2017, Elsevier-Academic Press, USA. pp:229-36.
  • ‎11. Reynolds MG, Damon IK. Outbreaks of human monkeypox after cessation of smallpox vaccination. Trends Microbiol ‎‎2012; 20(2): 80-7.
  • ‎12. Yinka-Ogunleye A, Aruna O, Dalhat M, Ogoina D, McCollum A, Disu Y, et al; CDC Monkeypox Outbreak Team. ‎Outbreak of human monkeypox in Nigeria in 2017-18: a clinical and epidemiological report. Lancet Infect Dis 2019; ‎‎19(8): 872-9.
  • ‎13. Mathieu E, Dattani S, Ritchie H, Roser M. Monkeypox. Our World in Data (OWID), Global Change Data Lab, ‎University of Oxford, England (ourworldindata.org). Available at: https://ourworldindata.org/monkeypox [Accessed June ‎‎16, 2022]. ‎
  • ‎14. World Health Organization (WHO), Geneva, Switzerland. Monkeypox (19 May 2022). Available at: ‎https://www.who.int/news-room/fact-sheets/detail/monkeypox [Accessed June 02, 2022]. ‎
  • ‎15. Adler H, Gould S, Hine P, Snell LB, Wong W, Houlihan CF, et al. Clinical features and management of human ‎monkeypox: a retrospective observational study in the UK. Lancet Infect Dis 2022: S1473-3099(22)00228-6.
  • ‎16. Şahiner F, Tekin K. An Overview of Monkeypox Virus and Other Medically Important Poxviruses. J Mol Virol Immunol ‎‎2022; 3(2): 79-97.
  • ‎17. International Committee on Taxonomy of Viruses, Washington, DC. ICTV reports; Poxviridae. Available at: ‎https://talk.ictvonline.org/ictv-reports/ictv_9th_report/dsdna-viruses-2011/w/dsdna_viruses/74/poxviridae [Accessed ‎May 22, 2022]. ‎
  • ‎18. International Committee on Taxonomy of Viruses, Washington, DC. Virus Taxonomy: 2021, July 2021. Available at: ‎https://talk.ictvonline.org/taxonomy/ [Accessed May 22, 2022]. ‎
  • ‎19. Sigal LJ. The Pathogenesis and Immunobiology of Mousepox. Adv Immunol 2016; 129: 251-76.
  • ‎20. Nazarian SH, Rahman MM, Werden SJ, Villeneuve D, Meng X, Brunetti C, et al. Yaba monkey tumor virus encodes a ‎functional inhibitor of interleukin-18. J Virol 2008; 82(1): 522-8.
  • ‎21. Mendez-Rios JD, Martens CA, Bruno DP, Porcella SF, Zheng ZM, Moss B. Genome sequence of erythromelalgia-‎related poxvirus identifies it as an ectromelia virus strain. PLoS One 2012; 7(4): e34604.
  • ‎22. Nazarian SH, Barrett JW, Stanford MM, Johnston JB, Essani K, McFadden G. Tropism of Tanapox virus infection in ‎primary human cells. Virology 2007; 368(1): 32-40. [
  • ‎23. Oba K, Göker A. Case of Eruptive Xanthoma with Koebner's Phenomenon. Dermatoz 2020; 11(2): 24-6.
  • ‎24. Neri I, Liberati G, Virdi A, Patrizi A. Congenital molluscum contagiosum. Paediatr Child Health 2017; 22(5): 241-2.
  • ‎25. Dahiya SS, Kumar S, Mehta SC, Narnaware SD, Singh R, Tuteja FC. Camelpox: A brief review on its epidemiology, ‎current status and challenges. Acta Trop 2016; 158: 32-8.
  • ‎26. Jezek Z, Kríz B, Rothbauer V. Camelpox and its risk to the human population. J Hyg Epidemiol Microbiol Immunol ‎‎1983; 27(1): 29-42.
  • ‎27. Postma BH, Diepersloot RJ, Niessen GJ, Droog RP. Cowpox-virus-like infection associated with rat bite. Lancet 1991; ‎‎337(8743): 733-4.
  • ‎28. European Centre for Disease Prevention and Control, European Union, Sweden. Cowpox. Available at: ‎https://www.ecdc.europa.eu/en/cowpox#:~:text=Sporadic%20human%20cases%20of%20cowpox,the%20form%20of%‎‎20red%20blisters. [Accessed May 23, 2022]. ‎
  • ‎29. Eis-Hübinger AM, Gerritzen A, Schneweis KE, Pfeiff B, Pullmann H, Mayr A, et al. Fatal cowpox-like virus infection ‎transmitted by cat. Lancet 1990; 336(8719): 880.
  • ‎30. Duraffour S, Meyer H, Andrei G, Snoeck R. Camelpox virus. Antiviral Res 2011; 92(2): 167-86.
  • ‎31. Kurth A, Wibbelt G, Gerber HP, Petschaelis A, Pauli G, Nitsche A. Rat-to-elephant-to-human transmission of cowpox ‎virus. Emerg Infect Dis 2008; 14(4): 670-1.
  • ‎32. Zwart P, Gispen R, Peters JC. Cowpox in okapis Okapia johnstoni at Rotterdam zoo. Br Vet J 1971; 127(1): 20-4.
  • ‎33. Okeke MI, Hansen H, Traavik T. A naturally occurring cowpox virus with an ectromelia virus A-type inclusion protein ‎gene displays atypical A-type inclusions. Infect Genet Evol 2012; 12(1): 160-8.
  • ‎34. Zheng ZM, Zhang JH, Hu JM, Liu SF, Zhu WP. Poxviruses isolated from epidemic erythromelalgia in China. Lancet ‎‎1988; 1(8580): 296.
  • ‎35. Esteban DJ, Buller RML. Ectromelia virus: the causative agent of mousepox. J Gen Virol 2005; 86(Pt 10): 2645-59.
  • ‎36. McCollum AM, Damon IK. Human monkeypox. Clin Infect Dis 2014; 58(2): 260-7. [Erratum in: Clin Infect Dis 2014; ‎‎58(12): 1792]
  • ‎37. Arita I, Jezek Z, Khodakevich L, Ruti K. Human monkeypox: a newly emerged orthopoxvirus zoonosis in the tropical ‎rain forests of Africa. Am J Trop Med Hyg 1985; 34(4): 781-9.
  • ‎38. Perez Duque M, Ribeiro S, Martins JV, Casaca P, Leite PP, Tavares M, et al. Ongoing monkeypox virus outbreak, ‎Portugal, 29 April to 23 May 2022. Euro Surveill 2022; 27(22): pii=2200424.
  • ‎39. Antinori A, Mazzotta V, Vita S, Carletti F, Tacconi D, Lapini LE, et al; INMI Monkeypox Group. Epidemiological, ‎clinical and virological characteristics of four cases of monkeypox support transmission through sexual contact, Italy, ‎May 2022. Euro Surveill 2022; 27(22): pii=2200421.
  • ‎40. Pan D, Sze S, Nazareth J, Martin CA, Al-Oraibi A, Baggaley RF, et al. Monkeypox in the UK: arguments for a broader ‎case definition. Lancet 2022: S0140-6736(22)01101-1. [Online ahead of print]
  • ‎41. Hammerschlag Y, MacLeod G, Papadakis G, Adan Sanchez A, Druce J, Taiaroa G, et al. Monkeypox infection ‎presenting as genital rash, Australia, May 2022. Euro Surveill 2022; 27(22): pii=2200411.
  • ‎42. Vivancos R, Anderson C, Blomquist P, Balasegaram S, Bell A, Bishop L, et al; Monkeypox Incident Management ‎Team. Community transmission of monkeypox in the United Kingdom, April to May 2022. Euro Surveill 2022; 27(22): ‎pii=2200422.
  • ‎43. Minhaj FS, Ogale YP, Whitehill F, Schultz J, Foote M, Davidson W, et al; Monkeypox Response Team 2022. ‎Monkeypox Outbreak - Nine States, May 2022. MMWR Morb Mortal Wkly Rep 2022; 71(23): 764-9.
  • ‎44. Ferraro F, Caraglia A, Rapiti A, Cereda D, Vairo F, Mattei G, et al. Letter to the editor: multiple introductions of MPX ‎in Italy from different geographic areas. Euro Surveill 2022; 27(23): pii=2200456.
  • ‎45. de Nicolas-Ruanes B, Vivancos MJ, Azcarraga-Llobet C, Moreno AM, Rodriguez-Dominguez M, Berna-Rico ED, et al. ‎Monkeypox virus case with maculopapular exanthem and proctitis during the Spanish outbreak in 2022. J Eur Acad ‎Dermatol Venereol 2022. [Online ahead of print]
  • ‎46. European Centre for Disease Prevention and Control, European Union, Sweden. Monkeypox multi-country outbreak. ‎Available at: https://www.ecdc.europa.eu/sites/default/files/documents/Monkeypox-multi-country-outbreak.pdf ‎‎[Accessed May 23, 2022]. ‎
  • ‎47. Ogoina D, Iroezindu M, James HI, Oladokun R, Yinka-Ogunleye A, Wakama P, et al. Clinical Course and Outcome of ‎Human Monkeypox in Nigeria. Clin Infect Dis 2020; 71(8): e210-e214.
  • ‎48. Miura F, van Ewijk CE, Backer JA, Xiridou M, Franz E, Op de Coul E, et al. Estimated incubation period for ‎monkeypox cases confirmed in the Netherlands, May 2022. Euro Surveill 2022; 27(24): pii=2200448.
  • ‎49. Reynolds MG, Yorita KL, Kuehnert MJ, Davidson WB, Huhn GD, Holman RC, et al. Clinical manifestations of human ‎monkeypox influenced by route of infection. J Infect Dis 2006; 194(6): 773-80.
  • ‎50. Mahase E. Seven monkeypox cases are confirmed in England. BMJ 2022; 377: o1239.
  • ‎51. Reynolds MG, McCollum AM, Nguete B, Shongo Lushima R, Petersen BW. Improving the Care and Treatment of ‎Monkeypox Patients in Low-Resource Settings: Applying Evidence from Contemporary Biomedical and Smallpox ‎Biodefense Research. Viruses 2017; 9(12): 380.
  • ‎52. World Health Organization (WHO), Geneva, Switzerland. Multi-country monkeypox outbreak in non-endemic ‎countries. Available at: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON385 [Accessed May 23, ‎‎2022]. ‎
  • ‎53. Centers for Disease Control and Prevention (CDC). Household transmission of vaccinia virus from contact with a ‎military smallpox vaccinee--Illinois and Indiana, 2007. MMWR Morb Mortal Wkly Rep 2007; 56(19): 478-81.
  • ‎54. Lima MT, Oliveira GP, Afonso JAB, Souto RJC, de Mendonça CL, Dantas AFM, et al. An Update on the Known Host ‎Range of the Brazilian Vaccinia Virus: An Outbreak in Buffalo Calves. Front Microbiol 2019; 9: 3327.
  • ‎55. Singh RK, Balamurugan V, Bhanuprakash V, Venkatesan G, Hosamani M. Emergence and reemergence of vaccinia-‎like viruses: global scenario and perspectives. Indian J Virol 2012; 23(1): 1-11.
  • ‎56. Zafar A, Swanepoel R, Hewson R, Nizam M, Ahmed A, Husain A, et al. Nosocomial buffalopoxvirus infection, ‎Karachi, Pakistan. Emerg Infect Dis 2007; 13(6): 902-4.
  • ‎57. Rao AK, Petersen BW, Whitehill F, Razeq JH, Isaacs SN, Merchlinsky MJ, et al. Use of JYNNEOS (Smallpox and ‎Monkeypox Vaccine, Live, Nonreplicating) for Preexposure Vaccination of Persons at Risk for Occupational Exposure to ‎Orthopoxviruses: Recommendations of the Advisory Committee on Immunization Practices - United States, 2022. MMWR ‎Morb Mortal Wkly Rep 2022; 71(22): 734-42.
  • ‎58. Thèves C, Biagini P, Crubézy E. The rediscovery of smallpox. Clin Microbiol Infect 2014; 20(3): 210-8.
  • ‎59. Midilli K, Erkiliç A, Kuşkucu M, Analay H, Erkiliç S, Benzonana N, et al. Nosocomial outbreak of disseminated orf ‎infection in a burn unit, Gaziantep, Turkey, October to December 2012. Euro Surveill 2013; 18(11): 20425.
  • ‎60. Çevik L, Öztürk M. Aile sağlığı merkezinde tespit edilen bir orf olgusunun takip ve tedavisi. Türk Aile Hek Derg 2021; ‎‎25(3): 102-4.
  • ‎61. Rajkomar V, Hannah M, Coulson IH, Owen CM. A case of human to human transmission of orf between ‎mother and child. Clin Exp Dermatol 2016; 41(1): 60-3. ‎
  • ‎62. Falk ES. Parapoxvirus infections of reindeer and musk ox associated with unusual human infections. Br J Dermatol ‎‎1978; 99(6): 647-54.
  • ‎63. Schuler G, Hönigsmann H, Wolff K. The syndrome of milker's nodules in burn injury: evidence for indirect viral ‎transmission. J Am Acad Dermatol 1982; 6(3): 334-9.
  • ‎64. Haller SL, Peng C, McFadden G, Rothenburg S. Poxviruses and the evolution of host range and virulence. Infect ‎Genet Evol 2014; 21: 15-40.
  • ‎65. Jezek Z, Arita I, Szczeniowski M, Paluku KM, Ruti K, Nakano JH. Human tanapox in Zaire: clinical and ‎epidemiological observations on cases confirmed by laboratory studies. Bull World Health Organ 1985; 63(6): 1027-35.
  • ‎66. Dhar AD, Werchniak AE, Li Y, Brennick JB, Goldsmith CS, Kline R, et al. Tanapox infection in a college student. N ‎Engl J Med 2004; 350(4): 361-6.
  • ‎67. Brunetti CR, Amano H, Ueda Y, Qin J, Miyamura T, Suzuki T, et al. Complete genomic sequence and comparative ‎analysis of the tumorigenic poxvirus Yaba monkey tumor virus. J Virol 2003; 77(24): 13335-47.
  • ‎68. Barrett JW, McFadden. Origin and Evolution of Poxviruses (Chapter 19). In: Domingo E, Parrish CR, Holland JJ (eds), ‎Origin and Evolution of Viruses (2nd edition). 2008, Elsevier-Academic Press, USA. pp. 431-46.
  • ‎69. Moussatche N, Condit RC. Fine structure of the vaccinia virion determined by controlled degradation and ‎immunolocalization. Virology 2015; 475: 204-18.
  • ‎70. Yang L, Tian L, Li L, Liu Q, Guo X, Zhou Y, et al. Efficient assembly of a large fragment of monkeypox virus genome ‎as a qPCR template using dual-selection based transformation-associated recombination. Virol Sin 2022; S1995-‎‎820X(22)00041-4.
  • ‎71. Vora NM, Li Y, Geleishvili M, Emerson GL, Khmaladze E, Maghlakelidze G, et al. Human infection with a zoonotic ‎orthopoxvirus in the country of Georgia. N Engl J Med 2015; 372(13): 1223-30.
  • ‎72. Zimmermann P, Thordsen I, Frangoulidis D, Meyer H. Real-time PCR assay for the detection of tanapox virus and ‎yaba-like disease virus. J Virol Methods 2005; 130(1-2): 149-53.
  • ‎73. Ülgenalp O, Koç BT, Oğuzoğlu TÇ. Ruminantlarda Gözlenen Parapoxviruslar: Tarihçe, Epidemiyoloji, Patogenez, ‎Klinik Bulgular, İmmunoterapide ve Rekombinant Aşılarda Vektör Olarak Kullanımı. Animal Health Prod and Hyg 2018; ‎‎7(1): 551-7. ‎
  • ‎74. Reed KD, Melski JW, Graham MB, Regnery RL, Sotir MJ, Wegner MV, et al. The detection of monkeypox in humans ‎in the Western Hemisphere. N Engl J Med 2004; 350(4): 342-50.
  • ‎75. Orba Y, Sasaki M, Yamaguchi H, Ishii A, Thomas Y, Ogawa H, et al. Orthopoxvirus infection among wildlife in ‎Zambia. J Gen Virol 2015; 96(Pt 2): 390-4.
  • ‎76. Loveless BM, Mucker EM, Hartmann C, Craw PD, Huggins J, Kulesh DA. Differentiation of Variola major and Variola ‎minor variants by MGB-Eclipse probe melt curves and genotyping analysis. Mol Cell Probes 2009; 23(3-4): 166-70.
  • ‎77. Kozlov M. Monkeypox vaccination begins - can the global outbreaks be contained? Nature 2022; 606(7914): 444-5. ‎‎
  • ‎78. Hopkins RJ, Lane JM. Clinical efficacy of intramuscular vaccinia immune globulin: a literature review. Clin Infect Dis ‎‎2004; 39(6): 819-26. ‎