Published July 21, 2022 | Version Version 1
Journal article Open

Three-dimensional structured illumination microscopy with enhanced axial resolution

Creators

  • 1. Laboratory of High Resolution Optical Imaging (HROI), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH)

Description

Release date: 11-08-2022 (MM-DD-YYYY)
Contacts: Xuesong Li (lix3@janelia.hhmi.org), Hari Shroff (shroffh@janelia.hhmi.org)
Organization: National Institutes of Health (NIH) & Janelia Research Campus, Howard Hughes Medical Institute (HHMI)

These are representative test datasets for paper "Three-dimensional structured illumination microscopy with enhanced axial resolution".

1. "bac_3DSIM(1P35NA).tif", "bac_4BSIM(1P35NA).tif", "U2OS_Tomm20_3DSIM(1P35NA).tif" and "U2OS_Tomm20_4BSIM(1P35NA).tif" are raw 3D SIM or 4-beam SIM images for Wiener reconstruction. The Matlab-based reconstruction code and software can be downloaded here.

2. "DeepLearning_models(EMTB).zip" contains 2 deep learning models for image denoising and 1 model for axial resolution improvement. "DeepLearning_test_dataset(EMTB).zip" contains 15 low-SNR raw 3D SIM images as input and 1 final result after the 3-step deep learning process. Both the models and test datasets are based on live Jurkat T cells with a microtubule marker labeled by EMTB 3x GFP and must be used together. The Python-based deep learning code to improve axial resolution of 3D SIM images can be downloaded here.

 

All the others are representative source data for the main figures (Figs 1d, 2a, 2e, 2h, 3a, 3c, 3h, 3b, 3e, 4b, 4e, 5b, 5e, 6) in paper "Three-dimensional structured illumination microscopy with enhanced axial resolution".

Files

bac_3DSIM(1P35NA).tif

Files (19.3 GB)

Name Size Download all
md5:730deac1e406fd4111fe5b2b71fe5074
63.0 MB Preview Download
md5:57e0cc49c745f643c1d5e6cbfdd982b2
131.9 MB Preview Download
md5:f38e384bdb16aec6061ae43c889a756e
335.9 MB Preview Download
md5:660eb464a408a8a28e33768558f62eec
168.9 MB Preview Download
md5:f155009105b77c335ed5826d61b43ce2
474.1 MB Preview Download
md5:58cbe5910eb1d718c85d175afe23dab3
474.1 MB Preview Download
md5:198525deef5669d90f9c1d6c93cc3ef5
474.1 MB Preview Download
md5:b45d002053388f8c66e32b214cbb0276
118.5 MB Preview Download
md5:68684320529bef28b2a750033615a128
118.5 MB Preview Download
md5:d9ae66e51bef0190054dc9af65230d69
118.5 MB Preview Download
md5:dc6320a67157e1b4bec0affa8d812b63
237.0 MB Preview Download
md5:e9b7ef86da664ba1732de62e5ed29e13
237.0 MB Preview Download
md5:e3ffcdd6ddbad543093073b4916eb13e
237.0 MB Preview Download
md5:eb36558943482c4a2a8a6effd2dd0265
125.0 MB Preview Download
md5:3c65d5654849559d03a53d838f7b4b5a
205.6 MB Preview Download
md5:08a90fb5eb61b13ae3495429ea069aa6
205.6 MB Preview Download
md5:610b25d4c3a25ebb368e9aa337bead50
53.6 kB Preview Download
md5:a8ab78c4381ce83260866ab97fb09834
53.5 kB Preview Download
md5:1b7f8204f9f9de7c7e3aec8a5221d5f5
3.4 GB Preview Download
md5:d5b76da3739ac27902959cb507ad13a1
162.2 kB Preview Download
md5:1e0182d6e43d4695cc4d6f9cc407bed3
2.5 GB Preview Download
md5:c3bbe6ac1ed3f4ce04d478cb6c16fb1e
887.8 MB Preview Download
md5:e33bf3bdd2fc57844779501d7a0a5e31
887.8 MB Preview Download
md5:91f09d000b4a049b1788d6b99cd411cb
887.8 MB Preview Download
md5:dc7e45f9ff428189c0fa1f7b4abdbd15
38.7 kB Preview Download
md5:fa1299c8fdd9979e64d3488865663ea0
38.7 kB Preview Download
md5:5d345f24af3095e19b0385062eb65085
38.7 kB Preview Download
md5:67ce05900499cfd48f47097cb3bcf202
462.9 kB Preview Download
md5:b3bd8974484a285f9a46fb5a5307d84f
368.7 MB Preview Download
md5:05c4a020e508e9d11e3fba3eaa8a5caf
98.1 MB Preview Download
md5:d532bc0191a5a48e84e0a3a30c9794fc
169.0 MB Preview Download
md5:d0a83f0dc58fba97695db7bcb423fec3
2.8 GB Preview Download
md5:9f884973a77457c119eedcef2b8a6ab3
2.8 GB Preview Download
md5:fcce58527c1fb350d614d08c6d6e1ef3
259.6 MB Preview Download
md5:3e079c4735df41c567a1d664399de301
527.1 MB Preview Download