Published June 24, 2022 | Version v1
Journal article Open

Learning to detect RFI in radio astronomy without seeing it

  • 1. University of Amsterdam
  • 2. Astron
  • 3. University of Amsterdam, Netherlands eScience Centre
  • 4. Elena

Description

Dataset for training and evaluating the generative novelty detection-based models used for RFI detection. The LOFAR dataset is made up of the following observations from the LTA:

Project Observation ID Source Number of sub-bands Channels per subband Duration Date
LC9_014 629174 3C295 243 16 599.0s 2017-11-21 19:42:02
DDT9_001 631961 3C380 243 16 599.0s 2017-12-07 17:12:00
LC9_004 632121 3C295 243 16 599.0s 2017-12-12 10:00:00
LC9_005 643433 3C295 243 16 599.0s 2018-03-02 05:12:00
LC9_030 652366 3C295 243 16 599.0s 2018-05-11 01:46:12

For usage details please see the paper's  Github repository.

Files

Files (21.5 GB)

Name Size Download all
md5:290cffeaa4b5e62eb53cf0ebb0f3e392
440.4 MB Download
md5:93edd3146283cd51a60fa5ef4697dd3f
440.4 MB Download
md5:e8d9cf159e6c49d11a0718d45ad79064
440.4 MB Download
md5:1cf910ddad0591679b4fc44892bf6317
440.4 MB Download
md5:4c6804bf383d98bf19c0667010b1ce05
440.4 MB Download
md5:af506bf2044238f4abbdd9ce11694b89
440.4 MB Download
md5:1568e827c794fafda687cff3474d37e0
440.4 MB Download
md5:9a68680941f6137f0557b55e642dc0a0
440.4 MB Download
md5:fb44b80af3e9cc1f87017886cad90346
440.4 MB Download
md5:e0a15b7e3dc01e8faa76c655d4ac64f6
3.8 GB Download
md5:112831313fca27de3ecfe925b301bc87
3.8 GB Download
md5:8d830ae478c1fd9c90b527b0de5e54e6
10.0 GB Download