Published June 24, 2022
| Version v1
Journal article
Open
Learning to detect RFI in radio astronomy without seeing it
- 1. University of Amsterdam
- 2. Astron
- 3. University of Amsterdam, Netherlands eScience Centre
- 4. Elena
Description
Dataset for training and evaluating the generative novelty detection-based models used for RFI detection. The LOFAR dataset is made up of the following observations from the LTA:
Project | Observation ID | Source | Number of sub-bands | Channels per subband | Duration | Date |
LC9_014 | 629174 | 3C295 | 243 | 16 | 599.0s | 2017-11-21 19:42:02 |
DDT9_001 | 631961 | 3C380 | 243 | 16 | 599.0s | 2017-12-07 17:12:00 |
LC9_004 | 632121 | 3C295 | 243 | 16 | 599.0s | 2017-12-12 10:00:00 |
LC9_005 | 643433 | 3C295 | 243 | 16 | 599.0s | 2018-03-02 05:12:00 |
LC9_030 | 652366 | 3C295 | 243 | 16 | 599.0s | 2018-05-11 01:46:12 |
For usage details please see the paper's Github repository.
Files
Files
(21.5 GB)
Name | Size | Download all |
---|---|---|
md5:290cffeaa4b5e62eb53cf0ebb0f3e392
|
440.4 MB | Download |
md5:93edd3146283cd51a60fa5ef4697dd3f
|
440.4 MB | Download |
md5:e8d9cf159e6c49d11a0718d45ad79064
|
440.4 MB | Download |
md5:1cf910ddad0591679b4fc44892bf6317
|
440.4 MB | Download |
md5:4c6804bf383d98bf19c0667010b1ce05
|
440.4 MB | Download |
md5:af506bf2044238f4abbdd9ce11694b89
|
440.4 MB | Download |
md5:1568e827c794fafda687cff3474d37e0
|
440.4 MB | Download |
md5:9a68680941f6137f0557b55e642dc0a0
|
440.4 MB | Download |
md5:fb44b80af3e9cc1f87017886cad90346
|
440.4 MB | Download |
md5:e0a15b7e3dc01e8faa76c655d4ac64f6
|
3.8 GB | Download |
md5:112831313fca27de3ecfe925b301bc87
|
3.8 GB | Download |
md5:8d830ae478c1fd9c90b527b0de5e54e6
|
10.0 GB | Download |