Published June 13, 2022 | Version v2
Journal article Open

The unique nano-and microstructure of twinned foraminiferal shell calcite

  • 1. 1. Forschungszentrum Jülich, Institut für Energie und Klimaforschung, IEK-2, 52425, Jülich, Germany
  • 2. 2. Department für Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
  • 3. 3. Zentrale Einrichtung Elektronenmikroskopie, Universität Ulm, 89081 Ulm, Germany
  • 4. 4. Centro de Instrumentación Científica, Universidad de Granada, 18071 Granada, Spain
  • 5. 5. Biozentrum LMU München, 82152 Planegg-Martinsried, Germany
  • 6. 6. Departamento de Estratigrafía y Paleontología, Universidad de Granada, 18071 Granada, Spain, and Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Armilla, 18100, Spain

Description

Diversification of biocrystal arrangement patterns, incorporation of biopolymers at many scale levels and a hierarchical architecture are keys for biomaterial optimization.

In contrast to molluscan microstructures that consist of ordered assemblies of regularly shaped biocrystals, shells of modern rotaliid foraminifera comprise variously sized and highly irregularly shaped crystals. Benthic and planktonic foraminiferal shell crystals are mesocrystals. Crystal morphologies range from polyhedral, fibrous, to bladed-platy, with most of them having fractal-dendritic morphologies.

In this contribution we investigate the nanometer-scale structure and microstructural arrangement of the fractal-dendritic crystals and demonstrate for planktonic Pulleniatina obliquiloculata, Rotaliida, that these consist of twinned calcite. Each fractal-dendritic crystal-unit comprises twin individuals misoriented to each other by 60°. We report for the twinned crystals a unique microstructure, not yet observed for crystals of other carbonate-shelled organisms. The fractal-dendritic, twinned, crystals consist, at the site of nucleation in a rhizopodial-network, of minute fibrils. With distance away from the nucleation site, fibrils change shape and size and evolve to large, twinned, bladed/platy crystals. Arrays of the latter seam outer shell surfaces. We demonstrate that the twinned, fractal-dendritic, crystals form through growth competition at high supersaturation and pH and discuss the main determinants that lead to P. obliquiloculata calcite formation.

Notes

Data processable only with the Oxford Instruments EBSD evaluation software.

Files

Files (223.7 MB)

Name Size Download all
md5:87404572514a637bb7398b6737846604
1.9 kB Download
md5:7f2f795ed4efb9bdc6cceaff3ef2b2ca
14.6 MB Download
md5:643c8df5fb98bb9f6435534c9acd5ff3
1.9 kB Download
md5:8c25f71e20e91d2d00fad5fa5fac3882
16.3 MB Download
md5:f05f72daa276fe94572f126b1e37921a
1.9 kB Download
md5:35c777b53203bb03113d954985daa3eb
32.3 MB Download
md5:3c873fd8195da80e5c9dd21cc221d9a9
1.9 kB Download
md5:4f0c1fe7b54252c8f159e58128240480
14.5 MB Download
md5:38d849602fc0cc32e7b2131f69ef28e9
1.8 kB Download
md5:5b8ca4122c223233bf678a01a1fe3b3b
9.0 MB Download
md5:c93245409635e04c7db61eed77ba1e9c
1.7 kB Download
md5:ea499b088b5d0801ef41b1435d60c16e
13.7 MB Download
md5:87404572514a637bb7398b6737846604
1.9 kB Download
md5:7f2f795ed4efb9bdc6cceaff3ef2b2ca
14.6 MB Download
md5:8decc2a28ca24a5384dd43bf3615e322
1.9 kB Download
md5:511cc269f54befb6238a45cf32e0122e
6.5 MB Download
md5:38d849602fc0cc32e7b2131f69ef28e9
1.8 kB Download
md5:5b8ca4122c223233bf678a01a1fe3b3b
9.0 MB Download
md5:38d849602fc0cc32e7b2131f69ef28e9
1.8 kB Download
md5:5b8ca4122c223233bf678a01a1fe3b3b
9.0 MB Download
md5:5f612d6dc6df15f679675c37a8edb376
1.9 kB Download
md5:8c2accc338e4e7a9789e63db98f5ccf7
3.9 MB Download
md5:884a430b13e7cbcb869b3eefa7c0f212
1.5 kB Download
md5:32a5fe40700d2764290b5eb4cba13979
30.8 MB Download
md5:68de69dc76c772e9f4ca97f994f8aab7
1.6 kB Download
md5:608672d2d7fe664e1201d648d03fa66f
26.9 MB Download
md5:011473b9ac695e55784142ce74536257
1.5 kB Download
md5:bb89f323371a3f0f4473ba27a8a3ce80
22.3 MB Download