Published June 15, 2022 | Version v1
Journal article Open

An Overview of Monkeypox Virus and Other Medically Important Poxviruses

  • 1. Department of Medical Microbiology, Gulhane Medical Faculty, University of Health Sciences, Ankara, Türkiye.
  • 2. Medical Microbiology Laboratory, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Türkiye.

Description

Özet

Çiçek hastalığı tarihin ilk dönemlerinden beri neden olduğu büyük salgınlar ve yıkım (ölümler) ile insanlık hafızasında derin izler bırakmıştır. Çiçek hastalığı etkeni olan variola virus ve aynı ailede yer alan virüslerden bazıları bilim ve tıp dünyasında birçok sıra dışı değişimin bir parçası olmuştur. Kadim uygarlıklarda aşılamanın ilk örnekleri (variyolasyon), insanlarda kullanılmak üzere geliştirilen ilk güvenli aşılar (sığır çiçeği virusu, vaccinia virus), viral patogenezin ilk enfeksiyon modeli (ectromelia virus) ve dünya genelinde eradike edilen ilk insan enfeksiyonunun (çiçek virusu) poksviruslar olması bu virüsleri bilim dünyasında ayrıcalıklı bir yerde tutmaktadır. Çiçek virusu (variola major) yüksek mortaliteli enfeksiyonlara ve salgınlara neden olması ile biyolojik savaş ajanı olarak sınıflandırılmakta (kategori A) ve dünya genelinde bir endişe kaynağı olmaya devam etmektedir. Bu virüsler çeşitli biyolojik özellikleri ile de benzersizdir. İnsan enfeksiyonları ile ilişkili en büyük virüslerden olan poksviruslar çok sayıda protein kodlamaları, diğer DNA virüslerinden farklı olarak başlıca hücre sitoplazmasında replike olmaları ve sahip oldukları diğer avantajlı özellikleri ile aşı geliştirme ve vektör temelli tedavi çalışmalarında elverişli bir model olarak yaygın bir şekilde kullanılmaktadır. Poksvirusların 10’dan fazla türü insanlarda enfeksiyonlara neden olmaktadır ve sadece insanlardan izole edilen birkaç türü dışında bu virüsler genel olarak zoonotik enfeksiyonlar ile ilişkilidir. Bu türlerden biri olan maymun çiçeği virusu (monkeypox virus, MPXV) çiçek aşısı kaynaklı muhtemel çapraz bağışıklık nedeniyle geçmiş dönemlerde insanlık için bir tehdit olmaktan uzak görülmüştür. Bununla beraber, 1970'lerin başlarında Orta ve Batı Afrika’da raporlanan lokal maymun çiçeği olgularının yerini, 2000’li yıllarda Amerika’daki ve Sudan’daki küçük ölçekli salgınlar almış ve sonraki dönemlerde başta Demokratik Kongo Cumhuriyeti ve Nijerya olmak üzere Afrika ülkelerinde sürekli artan bir şekilde olgu bildirimlerinin yapılması ile bu virüs çiçek virusunun eradikasyonundan sonra Poxviridae ailesinin en önemli türü olarak görülmeye başlanmıştır. Hayvan rezervuarları ile temas olasılığını artıran epidemiyolojik değişikliklerin yanı sıra, çiçek aşısı olmamış nüfusun giderek artan oranı ile yeni ve beklenmedik bulaş paterni insan maymun çiçeği enfeksiyonlarının yoğunlaşmaya devam edebileceğini göstermektedir. Son günlerde birçok ülke ve sağlık otoriteleri maymun çiçeği virusu ve çiçek virusu ile ilgili mevcut ve olası riskleri yeniden değerlendirirken, bazı ülkeler salgın olasılığı ve biyogüvenlik risklerine karşı çeşitli önlemler almaya başladılar. Bu makalenin temel amacı, poksvirus türlerinin genel biyolojik özelliklerini ele almak, konakçı dağılımlarını incelemek ve insan enfeksiyonlarıyla ilişkili poksvirus türlerine atfedilen risklere genel bir bakış sunmaktır.

Abstract

Since the earliest times of history, smallpox left deep traces in the memory of humanity with the great epidemics and destruction (deaths) it caused. Variola virus, which is the causative agent of smallpox, and some other viruses in the same family have been a part of many extraordinary changes in the field of science and medicine. Poxviruses have a privileged position in the scientific world due to the fact that the first examples of immunization (variolation) in ancient civilizations, the first safe vaccines developed for use in humans (cowpox virus, vaccinia virus), first infection model of viral pathogenesis (ectromelia virus), and the first human infection eradicated globally (smallpox). Smallpox virus (variola major) is classified as a biological warfare agent (category A), causing high-mortality infections and epidemics, and remains a worldwide concern. These viruses are also unique with their various biological features. Poxviruses, one of the largest viruses associated with human infections, are widely used as a convenient model in vaccine development and vector-based treatment studies, with large number of protein coding, ability to replicate primarily in the cell cytoplasm (unlike other DNA viruses), and their other advantageous features. More than 10 species of poxviruses cause infections in humans, and except for a few species that are only isolated from humans, these viruses are generally associated with zoonotic infections. Monkeypox virus (MPXV), one of these species, was regarded far from being a threat to humanity in the past due to possible cross-immunity caused by smallpox vaccine. However, local monkeypox cases reported in Central and West Africa in the early 1970s were replaced by small-scale outbreaks in the United States and Sudan in the 2000s, and in the following periods, this virus is considered to be the most important species of the Poxviridae family after the eradication of smallpox virus due to the increasing number of case reports in African countries, especially in the Democratic Republic of Congo and Nigeria. In addition to epidemiological changes that increase the risk of contact with animal reservoirs, the growing proportion of the unvaccinated population and the new and unexpected transmission pattern indicate that human monkeypox infections may continue to intensify. In recent days, while many countries and health authorities have been re-evaluating the existing and potential risks related to monkeypox virus and smallpox virus, some countries have started to take various measures against the possibility of epidemic and biosecurity risks. The main purpose of this article is to consider the general biological characteristics of poxvirus strains, to examine their host distribution, and to provide an overview of the risks attributed to poxvirus strains associated with human infections.

Notes

An Overview of Monkeypox Virus and Other Medically Important Poxviruses

Files

jmvi.2022.52.z.pdf

Files (1.5 MB)

Name Size Download all
md5:c7881f1750658590235d269921019eb7
1.5 MB Preview Download

Additional details

References

  • ‎1. Brown K, Leggat PA. Human Monkeypox: Current ‎State of Knowledge and Implications for the Future. ‎Trop Med ‎Infect Dis 2016; 1(1): 8. ‎
  • ‎2. Thèves C, Biagini P, Crubézy E. The rediscovery of ‎smallpox. Clin Microbiol Infect 2014; 20(3): 210-8. ‎‎‎
  • ‎3. Reynolds MG, Damon IK. Outbreaks of human ‎monkeypox after cessation of smallpox vaccination. ‎Trends ‎Microbiol 2012; 20(2): 80-7. ‎
  • ‎4. Mathieu E, Dattani S, Ritchie H, Roser M. Monkeypox. Our World in Data (OWID), Global Change Data Lab, ‎‎University of Oxford, England (ourworldindata.org). Available at: https://ourworldindata.org/monkeypox
  • ‎5. Kozlov M. Monkeypox goes global: why scientists ‎are on alert. Nature 2022; 606(7912): 15-6. ‎‎‎
  • ‎6. Şahiner F. Can Facial Masking Slow Down the ‎Spread of SARS-CoV-2 by a Variolation-like Effect? J ‎Mol Virol ‎Immunol 2020; 1(2): 19-23. ‎
  • ‎7. Parker S, Nuara A, Buller RM, Schultz DA. Human ‎monkeypox: an emerging zoonotic disease. Future ‎Microbiol ‎‎2007; 2(1): 17-34. ‎
  • ‎8. Vivancos R, Anderson C, Blomquist P, Balasegaram ‎S, Bell A, Bishop L, et al; Monkeypox Incident ‎Management ‎Team. Community transmission of ‎monkeypox in the United Kingdom, April to May 2022. ‎Euro Surveill 2022; ‎‎27(22): pii=2200422. ‎
  • ‎9. Perez Duque M, Ribeiro S, Martins JV, Casaca P, ‎Leite PP, Tavares M, et al. Ongoing monkeypox virus ‎outbreak, ‎Portugal, 29 April to 23 May 2022. Euro ‎Surveill 2022; 27(22): pii=2200424. ‎
  • ‎10. Antinori A, Mazzotta V, Vita S, Carletti F, Tacconi ‎D, Lapini LE, et al; INMI Monkeypox Group. ‎Epidemiological, ‎clinical and virological characteristics ‎of four cases of monkeypox support transmission ‎through sexual contact, ‎Italy, May 2022. Euro Surveill ‎‎2022; 27(22): pii=2200421. ‎
  • ‎11. Diven DG. An overview of poxviruses. J Am Acad ‎Dermatol 2001; 44(1): 1-16. ‎
  • ‎12. Burrell CJ, Howard CR, Murphy FA (eds). ‎Poxviruses (Chapter 16). In: Fenner and White's ‎Medical Virology ‎‎(5th edition). 2017, Elsevier-‎Academic Press, USA. pp:229-36. ‎
  • ‎13. Behbehani AM. The smallpox story: life and death ‎of an old disease. Microbiol Rev 1983; 47(4): 455-‎‎509. ‎
  • ‎14. Strassburg MA. The global eradication of ‎smallpox. Am J Infect Control 1982; 10(2): 53-9. ‎‎‎
  • ‎15. Rao AK, Petersen BW, Whitehill F, Razeq JH, ‎Isaacs SN, Merchlinsky MJ, et al. Use of JYNNEOS ‎‎(Smallpox and ‎Monkeypox Vaccine, Live, ‎Nonreplicating) for Preexposure Vaccination of Persons ‎at Risk for Occupational ‎Exposure to Orthopoxviruses: ‎Recommendations of the Advisory Committee on ‎Immunization Practices - United ‎States, 2022. MMWR ‎Morb Mortal Wkly Rep 2022; 71(22): 734-42. ‎‎‎
  • ‎16. Vora NM, Li Y, Geleishvili M, Emerson GL, ‎Khmaladze E, Maghlakelidze G, et al. Human infection ‎with a ‎zoonotic orthopoxvirus in the country of ‎Georgia. N Engl J Med 2015; 372(13): 1223-30. ‎‎‎
  • ‎17. World Health Organization (WHO), Geneva, ‎Switzerland. Monkeypox (19 May 2022). Available at: ‎‎https://www.who.int/news-room/fact-‎sheets/detail/monkeypox [Accessed June 02, 2022].‎
  • ‎18. Mahase E. Monkeypox: What do we know about ‎the outbreaks in Europe and North America? BMJ ‎‎2022; 377: ‎o1274. ‎
  • ‎19. Formenty P, Muntasir MO, Damon I, Chowdhary V, ‎Opoka ML, Monimart C, et al. Human monkeypox ‎outbreak ‎caused by novel virus belonging to Congo ‎Basin clade, Sudan, 2005. Emerg Infect Dis 2010; ‎‎16(10): 1539-45. ‎
  • ‎20. Sigal LJ. The Pathogenesis and Immunobiology of ‎Mousepox. Adv Immunol 2016; 129: 251-76. ‎‎‎
  • ‎21. Suryawanshi YR, Zhang T, Razi F, Essani K. ‎Tanapoxvirus: From discovery towards oncolytic ‎‎immunovirotherapy. J Cancer Res Ther 2020; 16(4): ‎‎708-12. ‎
  • ‎22. Jezek Z, Arita I, Szczeniowski M, Paluku KM, Ruti ‎K, Nakano JH. Human tanapox in Zaire: clinical and ‎‎epidemiological observations on cases confirmed by ‎laboratory studies. Bull World Health Organ 1985; ‎‎63(6): ‎‎1027-35. ‎
  • ‎23. Brunetti CR, Amano H, Ueda Y, Qin J, Miyamura T, ‎Suzuki T, et al. Complete genomic sequence and ‎‎comparative analysis of the tumorigenic poxvirus Yaba ‎monkey tumor virus. J Virol 2003; 77(24): 13335-47. ‎‎‎
  • ‎24. Bearcroft WG, Jamieson MF. An outbreak of ‎subcutaneous tumours in rhesus monkeys. Nature ‎‎1958; ‎‎182(4629): 195-6. ‎
  • ‎25. Knowles DP. Poxviridae (Chapter 7). In: ‎MacLachlan NJ, Dubovi EJ (eds), Fenner's Veterinary ‎Virology, 4th ‎edition. 2011, Elsevier Academic Press, ‎Amsterdam. pp:151-65. ‎
  • ‎26. Riedel S. Edward Jenner and the history of ‎smallpox and vaccination. Proc (Bayl Univ Med Cent) ‎‎2005; 18(1): ‎‎21-5. ‎
  • ‎27. Damaso CR. Revisiting Jenner's mysteries, the ‎role of the Beaugency lymph in the evolutionary path ‎of ‎ancient smallpox vaccines. Lancet Infect Dis 2018; ‎‎18(2): e55-e63. ‎
  • ‎28. International Committee on Taxonomy of Viruses, ‎Washington, DC. ICTV reports; Poxviridae. Available ‎at: ‎https://talk.ictvonline.org/ictv-‎reports/ictv_9th_report/dsdna-viruses-‎‎2011/w/dsdna_viruses/74/poxviridae ‎‎[Accessed May ‎‎22, 2022]. ‎
  • ‎29. International Committee on Taxonomy of Viruses, ‎Washington, DC. Virus Taxonomy: 2021, July 2021. ‎‎Available at: https://talk.ictvonline.org/taxonomy/ ‎‎[Accessed May 22, 2022].‎
  • ‎30. Abrahão JS, Silva-Fernandes AT, Assis FL, Guedes ‎MI, Drumond BP, Leite JA, et al. Human Vaccinia virus ‎and ‎Pseudocowpox virus co-infection: clinical ‎description and phylogenetic characterization. J Clin ‎Virol 2010; 48(1): ‎‎69-72. ‎
  • ‎31. Loveless BM, Mucker EM, Hartmann C, Craw PD, ‎Huggins J, Kulesh DA. Differentiation of Variola major ‎and ‎Variola minor variants by MGB-Eclipse probe melt ‎curves and genotyping analysis. Mol Cell Probes 2009; ‎‎23(3-4): ‎‎166-70. ‎
  • ‎32. Yang L, Tian L, Li L, Liu Q, Guo X, Zhou Y, et al. ‎Efficient assembly of a large fragment of monkeypox ‎virus ‎genome as a qPCR template using dual-selection ‎based transformation-associated recombination. Virol ‎Sin 2022; ‎S1995-820X(22)00041-4. ‎
  • ‎33. World Health Organization (WHO), Geneva, ‎Switzerland. Multi-country monkeypox outbreak in ‎non-endemic ‎countries. Available at: ‎https://www.who.int/emergencies/disease-outbreak-‎news/item/2022-DON385 [Accessed ‎May 23, 2022].‎
  • ‎34. European Centre for Disease Prevention and ‎Control, European Union, Sweden. Monkeypox multi-‎country ‎outbreak. Available at: ‎https://www.ecdc.europa.eu/sites/default/files/docum‎ents/Monkeypox-multi-country-‎outbreak.pdf ‎‎[Accessed May 23, 2022].‎
  • ‎35. Federico M. Giorgi, Daniele Pozzobon, Antonio Di ‎Meglio, Daniele Mercatelli. Genomic characterization of ‎the ‎recent monkeypox outbreak. bioRxiv ‎‎2022.06.01.494368. ‎
  • ‎36. Tolonen N, Doglio L, Schleich S, Krijnse Locker J. ‎Vaccinia virus DNA replication occurs in endoplasmic ‎‎reticulum-enclosed cytoplasmic mini-nuclei. Mol Biol ‎Cell 2001; 12(7): 2031-46. ‎
  • ‎37. Moussatche N, Condit RC. Fine structure of the ‎vaccinia virion determined by controlled degradation ‎and ‎immunolocalization. Virology 2015; 475: 204-18. ‎‎‎
  • ‎38. ViralZone, Swiss Institute of Bioinformatics, ‎Switzerland. Poxviridae. Available at: ‎‎https://viralzone.expasy.org/174?outline=all_by_species [Accessed May 22, 2022].‎
  • ‎39. Henderson DA. The eradication of smallpox--an ‎overview of the past, present, and future. Vaccine ‎‎2011; 29 ‎Suppl 4: D7-9. ‎
  • ‎40. Yao XD, Evans DH. High-frequency genetic ‎recombination and reactivation of orthopoxviruses ‎from DNA ‎fragments transfected into leporipoxvirus-‎infected cells. J Virol 2003; 77(13): 7281-90. ‎‎‎
  • ‎41. Moss B. Poxvirus cell entry: how many proteins ‎does it take? Viruses 2012; 4(5): 688-707. ‎
  • ‎42. Al Ali S, Baldanta S, Fernández-Escobar M, Guerra ‎S. Use of Reporter Genes in the Generation of Vaccinia ‎‎Virus-Derived Vectors. Viruses 2016; 8(5): 134. ‎‎‎
  • ‎43. Smith GL, Benfield CTO, Maluquer de Motes C, ‎Mazzon M, Ember SWJ, Ferguson BJ, et al. Vaccinia ‎virus ‎immune evasion: mechanisms, virulence and ‎immunogenicity. J Gen Virol 2013; 94(Pt11): 2367-‎‎92. ‎
  • ‎44. Volz A, Sutter G. Modified Vaccinia Virus Ankara: ‎History, Value in Basic Research, and Current ‎Perspectives ‎for Vaccine Development. Adv Virus Res ‎‎2017; 97: 187-243. ‎
  • ‎45. Chung CS, Chen CH, Ho MY, Huang CY, Liao CL, ‎Chang W. Vaccinia virus proteome: identification of ‎proteins ‎in vaccinia virus intracellular mature virion ‎particles. J Virol 2006; 80(5): 2127-40. .‎
  • ‎46. Shenouda MM, Noyce RS, Lee SZ, Wang JL, Lin ‎YC, Favis NA, et al. The mismatched nucleotides ‎encoded in ‎vaccinia virus flip-and-flop hairpin ‎telomeres serve an essential role in virion maturation. ‎PLoS Pathog 2022; ‎‎18(3): e1010392. ‎
  • ‎47. Shchelkunov SN, Totmenin AV, Safronov PF, ‎Mikheev MV, Gutorov VV, Ryazankina OI, et al. ‎Analysis of the ‎monkeypox virus genome. Virology ‎‎2002; 297(2): 172-94. .‎
  • ‎48. Meng X, Jiang C, Arsenio J, Dick K, Cao J, Xiang Y. ‎Vaccinia virus K1L and C7L inhibit antiviral activities ‎‎induced by type I interferons. J Virol 2009; 83(20): ‎‎10627-36. ‎
  • ‎49. Giotis ES, Laidlaw SM, Bidgood SR, Albrecht D, ‎Burden JJ, Robey RC, et al. Modulation of Early Host ‎Innate ‎Immune Response by an Avipox Vaccine Virus' ‎Lateral Body Protein. Biomedicines 2020; 8(12): 634. ‎‎‎
  • ‎50. Hammarlund E, Dasgupta A, Pinilla C, Norori P, ‎Früh K, Slifka MK. Monkeypox virus evades antiviral ‎CD4+ and ‎CD8+ T cell responses by suppressing ‎cognate T cell activation. Proc Natl Acad Sci U S A ‎‎2008; 105(38): 14567-‎‎72‎.
  • ‎51. McFadden G. Poxvirus tropism. Nat Rev Microbiol ‎‎2005; 3(3): 201-13. ‎
  • ‎52. Seitz K, Kübber-Heiss A, Auer A, Dinhopl N, ‎Posautz A, Mötz M, et al. Discovery of a ‎phylogenetically distinct ‎poxvirus in diseased ‎Crocodilurus amazonicus (family Teiidae). Arch Virol ‎‎2021; 166(4): 1183-91. ‎
  • ‎53. Lima MT, Oliveira GP, Afonso JAB, Souto RJC, de ‎Mendonça CL, Dantas AFM, et al. An Update on the ‎Known ‎Host Range of the Brazilian Vaccinia Virus: An ‎Outbreak in Buffalo Calves. Front Microbiol 2019; 9: ‎‎3327.‎
  • ‎54. Midilli K, Erkiliç A, Kuşkucu M, Analay H, Erkiliç S, ‎Benzonana N, et al. Nosocomial outbreak of ‎disseminated ‎orf infection in a burn unit, Gaziantep, ‎Turkey, October to December 2012. Euro Surveill ‎‎2013; 18(11): 20425.‎
  • ‎55. Ehmann R, Brandes K, Antwerpen M, Walter M, V ‎Schlippenbach K, Stegmaier E, et al. Molecular and ‎genomic ‎characterization of a novel equine molluscum ‎contagiosum-like virus. J Gen Virol 2021; 102(3): ‎‎001357. ‎
  • ‎56. Diaz-Cánova D, Moens UL, Brinkmann A, Nitsche ‎A, Okeke MI. Genomic Sequencing and Analysis of a ‎Novel ‎Human Cowpox Virus With Mosaic Sequences ‎From North America and Old World Orthopoxvirus. ‎Front Microbiol ‎‎2022; 13: 868887.‎
  • ‎57. Orba Y, Sasaki M, Yamaguchi H, Ishii A, Thomas Y, ‎Ogawa H, et al. Orthopoxvirus infection among wildlife ‎in ‎Zambia. J Gen Virol 2015; 96(Pt 2): 390-4.‎
  • ‎58. Duraffour S, Meyer H, Andrei G, Snoeck R. ‎Camelpox virus. Antiviral Res 2011; 92(2): 167-86. ‎
  • ‎59. Dahiya SS, Kumar S, Mehta SC, Narnaware SD, ‎Singh R, Tuteja FC. Camelpox: A brief review on its ‎‎epidemiology, current status and challenges. Acta ‎Trop 2016; 158: 32-8.‎
  • ‎60. Kurth A, Wibbelt G, Gerber HP, Petschaelis A, ‎Pauli G, Nitsche A. Rat-to-elephant-to-human ‎transmission of ‎cowpox virus. Emerg Infect Dis 2008; ‎‎14(4): 670-1.‎
  • ‎61. Zwart P, Gispen R, Peters JC. Cowpox in okapis ‎Okapia johnstoni at Rotterdam zoo. Br Vet J 1971; ‎‎127(1): ‎‎20-4. ‎
  • ‎62. Vestey JP, Yirrell DL, Norval M. What is human ‎catpox/cowpox infection? Int J Dermatol 1991; ‎‎30(10): 696-8. ‎
  • ‎63. Mavian C, López-Bueno A, Martín R, Nitsche A, ‎Alcamí A. Comparative Pathogenesis, Genomics and ‎‎Phylogeography of Mousepox. Viruses 2021; 13(6): ‎‎1146. ‎
  • ‎64. Adamovicz J. 10 - Select agent program impact ‎on the IBC Author links open overlay panel. In: Baskin ‎CR, ‎Zelicoff AP (eds), Ensuring National Biosecurity ‎‎(1st Edition). 2016, Academic Press, Elsevier. pp:169-‎‎84. ‎
  • ‎65. Centers for Disease Control and Prevention (CDC). ‎Household transmission of vaccinia virus from contact ‎with ‎a military smallpox vaccinee--Illinois and ‎Indiana, 2007. MMWR Morb Mortal Wkly Rep 2007; ‎‎56(19): 478-81. ‎
  • ‎66. National Institutes of Health (NIH), New York, ‎USA. National Library of Medicine (NLM); ‎ClinicalTrials.gov. A ‎Study of CF33-hNIS (VAXINIA), ‎an Oncolytic Virus, as Monotherapy or in Combination ‎With Pembrolizumab in ‎Adults With Metastatic or ‎Advanced Solid Tumors (MAST). Available at: ‎‎https://clinicaltrials.gov/ct2/show/NCT05346484 ‎‎[Accessed May 29, 2022]. ‎
  • ‎67. Singh RK, Balamurugan V, Bhanuprakash V, ‎Venkatesan G, Hosamani M. Emergence and ‎reemergence of ‎vaccinia-like viruses: global scenario ‎and perspectives. Indian J Virol 2012; 23(1): 1-11. ‎
  • ‎68. Biagini P, Thèves C, Balaresque P, Géraut A, ‎Cannet C, Keyser C, et al. Variola virus in a 300-year-‎old Siberian ‎mummy. N Engl J Med 2012; 367(21): ‎‎2057-9. ‎
  • ‎69. Falk ES. Parapoxvirus infections of reindeer and ‎musk ox associated with unusual human infections. Br ‎J ‎Dermatol 1978; 99(6): 647-54. ‎
  • ‎70. Nazarian SH, Barrett JW, Stanford MM, Johnston ‎JB, Essani K, McFadden G. Tropism of Tanapox virus ‎infection ‎in primary human cells. Virology 2007; ‎‎368(1): 32-40. ‎
  • ‎71. Haller SL, Peng C, McFadden G, Rothenburg S. ‎Poxviruses and the evolution of host range and ‎virulence. ‎Infect Genet Evol 2014; 21: 15-40. ‎
  • ‎72. Nazarian SH, Rahman MM, Werden SJ, Villeneuve ‎D, Meng X, Brunetti C, et al. Yaba monkey tumor virus ‎‎encodes a functional inhibitor of interleukin-18. J Virol ‎‎2008; 82(1): 522-8. ‎
  • ‎73. Mendez-Rios JD, Martens CA, Bruno DP, Porcella ‎SF, Zheng ZM, Moss B. Genome sequence of ‎erythromelalgia-‎related poxvirus identifies it as an ‎ectromelia virus strain. PLoS One 2012; 7(4): e34604. ‎‎‎
  • ‎74. Sezen K, Demirbağ Z. Entomopoksvirüsler ve ‎Biyolojik Kontrol. Türkiye Parazitoloji Dergisi 2005; ‎‎29(4): 280-‎‎6.‎