UPDATE: Zenodo migration postponed to Oct 13 from 06:00-08:00 UTC. Read the announcement.

Journal article Open Access

Nano-antenna array for high efficiency sunlight harvesting

Midrio Michele; Luca Pierantoni; Stefano Boscolo; Davide Truccolo; Davide Mencarelli

Solar rectennas are promising devices for energy harvesting. Capability of rectennas to convert incident light into useful energy depends on the antenna efficiency, that is the ratio between the power transferred to the load vs the incoming power. In this work, we first emphasize that for the efficiency to be calculated accurately, antennas need to be treated as receiving devices, not as transmitting ones. Then, we propose an arrangement of antennas that differs from those published so far in three respects: (1) the proposed arrangement is formed by an array of nano-antennas with sub-wavelength inter-element spacing, (2) it comprises a reflecting mirror, and (3) it allows for dual polarization operation. Through numerical simulations, we show that the small lattice pitch we use is responsible for frequency flattening of the lattice impedance over the whole solar spectrum, eventually allowing for excellent matching with the antennas’ loads. Also, the small pitch allows for a smooth dependence of the receiving efficiency on the angle of incidence of sunlight. Finally, we show numerically that the reflecting mirror also allows for an almost complete cancellation of light scattered by the receiving antennas. The final result is a polarization insensitive receiving theoretical efficiency larger than 70% over the whole 300-3000 nm spectral range, with a less than 10% energy wasting due to back-scattering of sunlight.

Files (4.3 MB)
Name Size
Midrio_et_al_Nano_antenna_array.pdf
md5:5af66b2360b2bb00bf2d67ec6b580864
4.3 MB Download
27
30
views
downloads
Views 27
Downloads 30
Data volume 129.5 MB
Unique views 25
Unique downloads 30

Share

Cite as