Zenodo.org will be unavailable for 2 hours on September 29th from 06:00-08:00 UTC. See announcement.

Conference paper Open Access

UniToChest: A Lung Image Dataset for Segmentation of Cancerous Nodules on CT Scans

Chaudhry, Hafiza Ayesha Hoor; Renzulli, Riccardo; Perlo Daniele; Santinelli, Francesca; Tibaldi, Stefano; Cristiano, Carmen; Grosso, Marco; Limerutti, Giorgio; Fiandrotti, Attilio; Grangetto, Marco; Fonio

Lung cancer has emerged as a major causes of death and early detection of lung nodules is the key towards early cancer diagnosis and treatment effectiveness assessment. Deep neural networks achieve outstanding results in tasks such as lung nodules detection, segmentation and classification, however their performance depends on the quality of the training images and on the training procedure. This paper introduces UniToChest, a datasetconsisting Computed Tomography (CT) scans of 623 patients. Then, we propose a lung nodules segmentation scheme relying on a convolutional neural architecture that we also re-purpose for a nodule detection task. The experimental results show accurate segmentation of lung nodules across awide diameter range and better detection accuracy over a traditional detection approach. The datasets and the code used in this paper are publicly made available as a baseline reference.

Files (1.3 MB)
Name Size
ICIAP_UNITOCHEST.pdf
md5:3da7110e65a6e06bc79ecc0c4edae9c9
1.3 MB Download
72
87
views
downloads
Views 72
Downloads 87
Data volume 111.9 MB
Unique views 66
Unique downloads 85

Share

Cite as