Published June 2, 2022 | Version v1
Dataset Open

CRISI-ADAPT II: free downscaled climate projection layers

Description

CRISI-ADAPT II project had as one of its main purposes to develop coherent, reliable and usable downscaled climate projections from the last CMIP6 in order to construct the basis for efficient support to climate adaptation and decision making of the related stakeholders. These projections were obtained with also the purpose to be freely available for further use in subsequent studies and, hence, foster adaptation to climate change in more areas.

For further details, find here a brief of the methodology followed:

 

                                                                                     Methodology

Information provided by 10 models belonging to CMIP6 have been included. Each model has a historical archive, from 01/01/1950 to 31/12/2014 and 4 future scenarios (ssp126, ssp245, ssp370 and ssp585) ranging from 01/01/2015 to 31/12/2100. The relation of the selected models is detailed in the next Table: 

Table. Information about the ten climate models belonging to the 6 Coupled Model Intercomparison Project (CMIP6) corresponding to the sixth report of the IPCC. Models were supplied by the Program for Climate Model Diagnosis and Intercomparison (PCMDI) archives. 

CMPI6 MODELS 

Resolution 

Responsible Centre 

References 

BCC-CSM2-MR 

1,125º x 1,121º 

Beijing Climate Center (BCC), China Meteorological Administration, China. 

Wu, T. et al. (2019) 

CanESM5 

2,812º x 2,790º 

Canadian Centre for Climate Modeling and Analysis (CC-CMA), Canadá. 

Swart, N.C. et al. (2019) 

CNRM-ESM2-1 

1,406º x 1,401º 

CNRM (Centre National de Recherches Meteorologiques), Meteo-France, Francia. 

Seferian, R. (2019) 

EC-EARTH3 

0,703º x 0,702º 

EC-EARTH Consortium 

EC-Earth Consortium. (2019) 

GFDL-ESM4 

1,250º x 1,000º 

National Oceanic and Atmospheric Administration (NOAA), E.E.U.U. 

Krasting, J.P. et al. (2018) 

MPI-ESM1-2-HR 

0,938º x 0,935º 

Max-Planck Institute for Meteorology (MPI-M), Germany. 

Von Storch, J. et al. (2017) 

MRI-ESM2-0 

1,125º x 1,121º 

Meteorological Research Institute (MRI), Japan. 

Yukimoto, S. et al. (2019) 

UKESM1-0-LL 

1,875º x 1,250º 

Uk Met Office, Hadley Centre, United Kingdom 

Good, P. et al. (2019) 

NorESM2-MM 

1,250º x 0,942º 

Norwegian Climate Centre (NCC), Norway. 

Bentsen, M. et al. (2019) 

ACCESS-ESM1-5 

1,875º x 1,250º 

Australian Community Climate and Earth System Simulator (ACCESS), Australia 

Ziehn, T. et al. (2019)

Since the case studies are distributed among Portugal, Spain, Italy, Malta and Cyprus, a grid covering the whole Mediterranean area, between latitudes 30°N and 50°N and longitudes between 15°W and 40°E, has been chosen for the study. The atmospheric variables available from CMIP6 are wind, temperature, humidity and rainfall at a daily timescale and sea level rise at a monthly timescale. However, it is possible simulate sub-daily rainfall (e.g. for the sector of Flooding and Emergency Response) thanks to the index-n method (Monjo et al. 2016). Other variables such as fog and wave height requires to be obtained from model post-processing. 

In addition to these models, information has also been combined to the ERA5-LAND, which has a resolution of 0.07°×0.07°. For each climate variable simulated by the CMIP6 models, a statistical downscaling was applied according to seven steps:  

  1. Firstly, as a reference field, a purely geo-statistical downscaling of the original Era5-Land grid (0.07°×0.07°) was performed for each variable to a 1km×1km grid, using linear stepwise regression with topological and geographical parameters (altitude, latitude, longitude and distance to the Atlantic Ocean and Mediterranean Sea), and bilinear model for the residual errors. 

  2. For all models and their corresponding scenarios, the average values for the study area have been calculated for the periods 1981-2010, 2021-2050 and 2071-2100 and their rate of variation between the periods 2071-2100 and 2021-2050.  
  3. The model scenario with the highest rate of variation and the model scenario with the lowest rate of variation have been chosen to range future variations of the variables. Quantiles 90th, 50th and 10th scenarios have been called Upper, Medium and Lower, respectively. 

  4. For these scenarios, Upper, Medium and Lower, the empirical values corresponding to the return periods of 5, 10, 20 and 30 years for the periods 1981-2010, 2021-2050, 2046-2075 and 2071-2100 have been calculated for each grid point in the model. 
  5. Once the above results were obtained, an interpolation to a grid of 1km×1km was performed using the bilinear method. 

  6. Then, the increment or difference with respect to the same return periods of the period 1981-2010 has been calculated for each period of 30 years (2021-2050, 2046-2075 and 2071-2100) and for each return period. Relative increment (instead of absolute increment) was considered for some variable such as precipitation and wind. 
  7. Finally, the absolute o relative increment of each scenario and return period (step 6) was added to the reference values of each variable (step 1), obtaining climate scenarios in a 1km×1km grid (see for instance Figure 8). This entire process, applied to return-period values, is an empirical quantile mapping by increment from reanalysis (Monjo et al. 2013).   

Files

PREC.zip

Files (4.7 GB)

Name Size Download all
md5:44259118fd140d5d4c1e924cf807441a
997.9 MB Preview Download
md5:c17abcbd58487df0a80f213a15ae1a63
669.5 MB Preview Download
md5:58457f485972a113805e95c3df005217
623.8 MB Preview Download
md5:28c52dc77a539be202796fe348d6c996
950.4 MB Preview Download
md5:6c2d9ccc320c4431d29deeccaa8af75f
1.4 GB Preview Download

Additional details

References

  • Bentsen, Mats; Oliviè, Dirk Jan Leo; Seland, Øyvind; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkevåg, Alf; Schwinger, Jörg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael (2019). NCC NorESM2-MM model output prepared for CMIP6 ScenarioMIP. Version YYYYMMDD[1]. Earth System Grid Federation. doi: 10.22033/ESGF/CMIP6.608.
  • Collins W, Bellouin N, Doutriaux-Boucher M, Gedney N, Hinton T, Jones CD, Liddicoat S, Martin G, O'Connor F, Rae J, Senior C, Totterdell I, Woodward S, Reichler T, Kim J, Halloran P. (2008). Evaluation of the HadGEM2 model. Hadley Centre Technical Note. HCTN 74, Met Office Hadley Centre, Exeter, UK.
  • EC-Earth Consortium (EC-Earth) (2019). EC-Earth-Consortium EC-Earth3-Veg model output prepared for CMIP6 Scenario MIP. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.727.
  • Good P., Sellar A., Tang Y., Rumbold S., Ellis R., Kelley D., Kuhlbrodt T. (2019). MOHC UKESM1.0-LL m.Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.6339.odel output prepared for CMIP6 ScenarioMIP ssp245. 1]
  • Seferian R. (2019). CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 AerChemMIP hist-1950HC. Version YYYYMMDD[1].Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.4041.
  • Swart N. C., Cole J. N. S., Kharin V. V., Lazare M., Scinocca J. F., Gillett N. P., Anstey J., Arora V., Christian J. R., Hanna S., Jiao Y., Lee W. G., Majaess F., Saenko O. A., Seiler C., Seinen C., Shao, A., Sigmond M., Solheim L., von Salzen K., Yang D. and Winter B. (2019). The Canadian Earth System Model version 5 (CanESM5.0.3), Geosci. Model Dev., 12, 4823–4873, doi:10.5194/gmd-12-4823-2019.
  • Von Storch, Jin-Song; Putrasahan, Dian; Lohmann, Katja; Gutjahr, Oliver; Jungclaus, Johann; Bittner, Matthias; Haak, Helmuth; Wieners, Karl-Hermann; Giorgetta, Marco; Reick, Christian; Esch, Monika; Gayler, Veronika; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; Behrens, Jörg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; Müller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich (2017). MPI-M MPIESM1.2-HR model output prepared for CMIP6 HighResMIP. Version YYYYMMDD[1].Earth System Grid Federation. doi: 10.22033/ESGF/CMIP6.762.
  • Wu T., Lu Y., Fang Y., Xin X., Li L., Li W., Jie W., Zhang J., Liu Y., Zhang L., Zhang F., Zhang Y., Wu F., Li J., Chu M., Wang Z., Shi X., Liu X., Wei M., Huang A., Zhang Y. and Liu, X. (2019). The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6 , Geosci. Model Dev. 12, 1573–1600. doi:10.5194/gmd-12-1573-2019, 2019.
  • Yukimoto S., Koshiro T., Kawai H., Oshima N., Yoshida, K., Urakawa S.; Tsujino H., Deushi M., Tanaka T., Hosaka M., Yoshimura H., Shindo E., Mizuta R., Ishii M., Obata A., Adachi, Y. (2019). MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.621.
  • Ziehn T., Chamberlain M., Lenton A., Law R., Bodman R., Dix M., Wang Y., Dobrohotoff P., Srbinovsky J., Stevens L., Vohralik P., Mackallah C, Sullivan A., O'Farrell S., Druken K. (2019). CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 CMIP. Version YYYYMMDD[1]. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.2288.
  • Monjo R. (2016). Measure of rainfall time structure using the dimensionless n-index. Climate Research, 67: 71-86. doi: 10.3354/cr01359.
  • Ribalaygua J, Torres L, Pórtoles J, Monjo R, Gaitán E, Pino MR. (2013). Description and validation of a two-step analogue/regression downscaling method. Theoretical and Applied Climatology, 114: 253-269. doi:10.1007/s00704-013-0836-x.