Published June 1, 2022 | Version 1.0
Dataset Open

Melt pond from aerial photographs of the Healy–Oden Trans Arctic Expedition (HOTRAX)

  • 1. University of Dayton
  • 2. Chalmers University of Technology

Description

The dataset contains mapped melt pond zones from aerial photographs which were obtained during helicopter photography flights as part of the Healy–Oden Trans Arctic Expedition (HOTRAX) between 5 August and 30 September 2005. The detection has been done using an original detection algorithm based on machine learning (U-Net). The areas in the images were divided into four classes: sea ice/snow, melt ponds, sub-merged ice and open water. The filenames contain IDs from the original dataset [Perovich et al 2008].

Notes

This work was supported by the Division of Physics at the U.S. National Science Foundation (NSF) through Grant PHY-2102906

Files

1053-json_label_viz.png

Files (102.8 MB)

Name Size Download all
md5:aa6f60f3f70e5552511d64f75efb6b87
2.7 MB Preview Download
md5:b3f8cb21cb7bb5fff160ea5331d0ed2c
1.5 MB Preview Download
md5:566d8cb11dba73b9ab06bc2772147b9b
3.0 MB Preview Download
md5:9680825db7168c1aeb5ee5026c650773
1.7 MB Preview Download
md5:9faa8a4faf107b06bf745fd0c9967bc0
3.2 MB Preview Download
md5:b4facc8f6a28bc8b8f57c47d2efacd2d
2.0 MB Preview Download
md5:acc888afbef3f6c7c02d52b68105cc49
3.5 MB Preview Download
md5:29dfed87804e503953e9ffa7e0276796
2.2 MB Preview Download
md5:5651a88961fd34291a7b8d5f53ff2c23
3.3 MB Preview Download
md5:500467cb0a2646e4e0a16dce310f3c3c
2.1 MB Preview Download
md5:950743283a09b5dc859606b52bf0b585
3.1 MB Preview Download
md5:e44e88e07f7c138abe2e2f50b634e21a
1.8 MB Preview Download
md5:b90ffde96d8d2e392ab0cf44265bad1f
3.4 MB Preview Download
md5:b08ad6eae780eb1936c7a9b0e5e82eaa
2.0 MB Preview Download
md5:b985af522d35cb17fbe1a6994888e635
3.4 MB Preview Download
md5:244ae924104f83601299410319e83956
2.0 MB Preview Download
md5:29e7ed9c3cb9a511ae72abc2a0ff6449
3.3 MB Preview Download
md5:79cc143fba0c4560d4ade94d3a8b5c45
2.0 MB Preview Download
md5:79ad699452a59565c1b5b0135edaf852
3.5 MB Preview Download
md5:a4b8947c96188c5c310b04bbc5393f66
2.1 MB Preview Download
md5:8093e54734f5c129d52e42372339c590
3.5 MB Preview Download
md5:ae11dc3c8ad105e1be1664514f75118f
2.1 MB Preview Download
md5:4d11b3c8369fba71fb3598696dc19814
3.6 MB Preview Download
md5:2975e5e1f1fd8c090bb26dd33c1615c4
2.2 MB Preview Download
md5:8ad19d82be3fa3be7f9db28ea63a8ff6
3.5 MB Preview Download
md5:6933602a20ee99c61905188a2d5cbc9b
2.1 MB Preview Download
md5:430eb8adfc2901de2570fedf9c43dabe
3.6 MB Preview Download
md5:28c364f30d9bd358e49558de562f0be6
2.2 MB Preview Download
md5:4095639c436b526b6d085b93c061d302
3.6 MB Preview Download
md5:f8b80b2ca2df0e3c8f1f8ea949e971e3
2.2 MB Preview Download
md5:d5a982719926733a830807becc54a21d
3.5 MB Preview Download
md5:b0e9d2acd67adb9984fd720536766154
2.1 MB Preview Download
md5:29f929d46e46e2092d073a4af1ff35d2
3.6 MB Preview Download
md5:ed1a22e9e1a8953dea9f72f598864702
2.2 MB Preview Download
md5:a51c825ef9360963f27b8296fa85393d
3.5 MB Preview Download
md5:00d9616de97bfe992d1625f8501deaf3
2.1 MB Preview Download
md5:41737caded6e36f797603097eacd088d
3.3 MB Preview Download
md5:f24d82413b8c9479e6a38602c6c7e0e6
2.0 MB Preview Download

Additional details

Related works

Is derived from
Journal article: 10.1029/2008JC004892 (DOI)