Published May 31, 2022 | Version v1
Journal article Restricted

Insight from newly sequenced chloroplast genome challenges the primitive position of Corydalis temulifolia (Papaveraceae)

  • 1. School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei Province, P. R. China & huangxiaomzs@163.com; https://orcid.org/0000-0001-7637-6619
  • 2. School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei Province, P. R. China & xiaodongxu2016@mails.ccnu.edu.cn; https://orcid.org/0000-0001-8218-1068
  • 3. School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei Province, P. R. China & Bio-resources key Laboratory of Shaanxi Province, Shaanxi University of Technology, Hanzhong 723001, Shaanxi Province, P. R. China

Description

Huang, Xiaomei, Xu, Xiaodong, Wang, Dong (2022): Insight from newly sequenced chloroplast genome challenges the primitive position of Corydalis temulifolia (Papaveraceae). Phytotaxa 548 (2): 223-239, DOI: 10.11646/phytotaxa.548.2.6

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:20410F5C4C35D752FF8FFFF5786DFFAC

References

  • Abdullah, Henriquez, C.L., Mehmood, F., Carlsen, M.M., Islam, M., Waheed, M.T., Poczai, P., Croat, T.B. & Ahmed, I. (2020) Complete Chloroplast Genomes of Anthurium huixtlense and Pothos scandens (Pothoideae, Araceae): Unique Inverted Repeat Expansion and Contraction Affect Rate of Evolution. Journal of Molecular Evolution 88 (7): 562-574. https://doi.org/10.1007/s00239-020-09958-w
  • Alzahrani, D.A., Yaradua, S.S., Yaradua, S.S., Albokhari, E.J., Albokhari, E.J. & Abba, A. (2020) Complete chloroplast genome sequence of Barleria prionitis, comparative chloroplast genomics and phylogenetic relationships among Acanthoideae. BMC Genomics 21 (1): 1-19. https://doi.org/10.1186/s12864-020-06798-2
  • Benson, G. (1999) Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Research 27 (2): 573-580. https://doi.org/10.1093/nar/27.2.573
  • Bunting. (1966) In: Baileya 13: 172.
  • Chen, S.F., Zhou, Y.Q., Chen, Y.R. & Gu, J. (2018) Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34 (17): i884- i890. https://doi.org/10.1093/bioinformatics/bty560
  • Cho, W.B., Lee, D.H., Choi, I.S. & Lee, J.H. (2018) The complete chloroplast genome of hemi-parasitic Pedicularis hallaisanensis (Orobanchaceae). Mitochondrial DNA Part B: Resources 3 (1): 235-236. https://doi.org/10.1080/23802359.2018.1437820
  • Cock, P.J.A., Antao, T., Chang, J.T., Chapman, B.A., Cox, C.J., Dalke,A., Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B. & De Hoon, M.J.L. (2009) Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25 (11): 1422-1423. https://doi.org/10.1093/bioinformatics/btp163
  • Cosner, M.E., Raubeson, L.A. & Jansen, R.K. (2004) Chloroplast DNA rearrangements in Campanulaceae: Phylogenetic utility of highly rearranged genomes. BMC Evolutionary Biology 4: 1-17. https://doi.org/10.1186/1471-2148-4-27
  • Darling, A.C.E., Mau, B., Blattner, F.R. & Perna, N.T. (2004) Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Research 14 (7): 1394-1403. https://doi.org/10.1101/gr.2289704
  • Darriba, D. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9 (8): 772. https://doi.org/10.1038/nmeth.2109
  • Delannoy, E., Fujii, S., Colas Des Francs-Small, C., Brundrett, M. & Small, I. (2011) Rampant Gene loss in the underground orchid Rhizanthella Gardneri highlights evolutionary constraints on plastid genomes. Molecular Biology and Evolution 28 (7): 2077- 2086. https://doi.org/10.1093/molbev/msr028
  • Dierckxsens, N., Mardulyn, P. & Smits, G. (2016) NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Research 45 (4): 1-9. https://doi.org/10.1093/nar/gkw955
  • Doyle, J.J. & Doyle, J.L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11-15.
  • Fay, J.C. & Wu, C.I. (2003) Sequence Divergence, Functional Constraint, and Selection in Protein Evolution. Annual Review of Genomics and Human Genetics 4: 213-235. https://doi.org/10.1146/annurev.genom.4.020303.162528
  • Fedde, F. (1924) Neue Arten von Corydalis aus China, VI. Repertorium Specierum Novarum Regni Vegetabilis 20: 50-63. https://doi.org/10.1002/fedr.19240200109
  • Fedde, F. (1925) Neue Arten von Corydalis aus China, IX. Repertorium Specierum Novarum Regni Vegetabilis 21: 46-52. https://doi.org/10.1002/fedr.19250210107
  • Fedde, F. (1925) Neue Arten von Corydalis aus China, X. Repertorium Specierum Novarum Regni Vegetabilis 22: 26. https://doi.org/10.1002/fedr.19250220105
  • Firetti, F., Zuntini, A.R., Gaiarsa, J.W., Oliveira, R.S., Lohmann, L.G. & Van Sluys, M.A. (2017) Complete chloroplast genome sequences contribute to plant species delimitation: A case study of the Anemopaegma species complex. American Journal of Botany 104 (10): 1493-1509. https://doi.org/10.3732/ajb.1700302
  • Franchet, A.R. (1894) Plantes Nouvelles de la Chine occidentale. Journal de Botanique 8: 273-304.
  • Franchet, F.M. (1886) Nouvelles Archives du Museum d'Histoire Naturelle. Paris, ser. 2, 8: 198.
  • Franch. (1886) In: Nouvelles archives du Museum d'histoire naturelle Ser. 2, 8: 198.
  • Frazer, K.A., Pachter, L., Poliakov, A., Rubin, E.M. & Dubchak, I. (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Research 32: W273-W279. https://doi.org/10.1093/nar/gkh458
  • Greiner, S., Lehwark, P. & Bock, R. (2019) OrganellarGenomeDRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Research 47 (W1): W59-W64. https://doi.org/10.1093/nar/gkz238
  • Guisinger, M.M., Chumley, T.W., Kuehl, J.V., Boore, J.L. & Jansen, R.K. (2010) Implications of the plastid genome sequence of Typha (Typhaceae, Poales) for understanding genome evolution in Poaceae. Journal of Molecular Evolution 70 (2): 149-166. https://doi.org/10.1007/s00239-009-9317-3
  • Guisinger, M.M., Kuehl, J.V., Boore, J.L. & Jansen, R.K. (2011) Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: Rearrangements, repeats, and codon usage. Molecular Biology and Evolution 28 (1): 583-600. https://doi.org/10.1093/molbev/msq229
  • Hong, C.P., Park, J., Lee, Y., Lee, M., Park, S.G., Uhm, Y., Lee, J. & Kim, C.K. (2017) accD nuclear transfer of Platycodon grandiflorum and the plastid of early Campanulaceae. BMC Genomics 18 (1): 607. https://doi.org/10.1186/s12864-017-4014-x
  • Hook, f. & Thomson. (1864) On the Genus Euptela, Sieb. & Zucc. Journal of the Proceedings of the Linnean Society, Botany 7: 243. [London]
  • Jin, J.J., Yu, W.B., Yang, J.B., Song, Y., Claude, W. & Yi, T.S. (2020) GetOrganelle : a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology 21: 241. https://doi.org/10.1186/s13059-020-02154-5
  • Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30 (4): 772-780. https://doi.org/10.1093/molbev/mst010
  • Kim, K.J. & Lee, H.L. (2004) Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Research 11 (4): 247-261. https://doi.org/10.1093/dnares/11.4.247
  • Kurtz, S., Choudhuri, J.V., Ohlebusch, E., Schleiermacher, C., Stoye, J. & Giegerich, R. (2001) REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Research 29 (22): 4633-4642. https://doi.org/10.1093/nar/29.22.4633
  • Lamarck, J.B. & Candolle, A.P. (1805) Flore Francaise, ed. 3, 4 (2). Chez H. Agasse, Paris, 545 pp.
  • Lee, H.L., Jansen, R.K., Chumley, T.W. & Kim, K.J. (2007) Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Molecular Biology and Evolution 24 (5): 1161-1180. https://doi.org/10.1093/molbev/msm036
  • Lee, C., Choi, I.S., Cardoso, D., de Lima, H.C., de Queiroz, L.P., Wojciechowski, M.F., Jansen, R.K. & Ruhlman, T.A. (2021) The chicken or the egg? Plastome evolution and an independent loss of the inverted repeat in papilionoid legumes. Plant Journal 107 (3): 861-875. https://doi.org/10.1111/tpj.15351
  • Li, H.T., Yi, T.S., Gao, L.M., Ma, P.F., Zhang, T., Yang, J.B., Gitzendanner, M.A., Fritsch, P.W., Cai, J., Luo, Y., Wang, H., van der Bank, M., Zhang, S.D., Wang, Q.F., Wang, J., Zhang, Z.R., Fu, C.N., Yang, J., Hollingsworth, P.M., Chase, M.W., Soltis, D.E., Soltis, P.S & Li, D.Z. (2019) Origin of angiosperms and the puzzle of the Jurassic gap. Nature Plants 5 (5): 461-470. https://doi.org/10.1038/s41477-019-0421-0
  • Li, H.T., Luo, Y., Gan, L., Ma, P.F., Gao, L.M., Yang, J.B., Cai, J., Gitzendanner, M.A., Fritsch, P.W., Zhang, T., Jin, J.J., Zeng, C.X., Wang, H., Yu, W.B., Zhang, R., van der Bank, M., Olmstead, R.G., Hollingsworth, P.M., Chase, M.W. & Soltis, D.E. (2021) Plastid phylogenomic insights into relationships of all flowering plant families. BMC Biology 19 (1): 232. [13 pp.] https://doi.org/10.1186/s12915-021-01166-2
  • Li, X., Yang, J.B., Wang, H., Song, Y., Corlett, R.T., Yao, X., Li, D.Z. & Yu, W.B. (2021) Plastid NDH Pseudogenization and Gene Loss in a Recently Derived Lineage from the Largest Hemiparasitic Plant Genus Pedicularis (Orobanchaceae). Plant and Cell Physiology 62 (6): 971-984. https://doi.org/10.1093/pcp/pcab074
  • Liden,M., Fukuhara,T.&Axberg,T.(1995) Phylogeny of Corydalis, ITS and morphology.Systematics and Evolution of the Ranunculiflorae, 188: 183-188. https://doi.org/10.1007/978-3-7091-6612-3_17
  • Liden, M., Fukuhara, T., Rylander, J. & Oxelman, B. (1997) Phylogeny and classification of Fumariaceae, with emphasis on Dicentra s. l., based on the plastid gene rps16 intron. Plant Systematics and Evolution 206 (1-4): 411-420. https://doi.org/10.1007/bf00987960
  • Liden, M. (1989) Corydalis (Papaveraceae: Fumarioideae) in Nepal. Bull. Bulletin of the British Museum (Natural History) Botany 18 (6): 524.
  • Liden, M. (1986) In: Opera Bot 88: 28.
  • Linnaeus, C. (1753) POLYANDRIA. MONOGYNIA, Classis XIII. In: Species Plantarum, vol. 1. 508 pp.
  • Linnaeus, C. (1753) DIDYNAMIA ANGIOSPERMIA. In: Species Plantarum, vol. 2. 636 pp. https://doi.org/10.5962/bhl.title.669
  • Linnaeus, C. von. (1753) Species Plantarum 2: 723.
  • Liu, Y., Huo, N., Dong, L., Wang, Y., Zhang, S., Young, H.A., Feng, X. & Gu, Y.Q. (2013) Complete Chloroplast Genome Sequences of Mongolia Medicine Artemisia frigida and Phylogenetic Relationships with Other Plants. PLoS ONE 8 (2): e57533. https://doi.org/10.1371/journal.pone.0057533
  • Liu, L.X., Du, Y.X., Shen, C., Li, R., Lee, J. & Li, P. (2020) The complete chloroplast genome of papaver setigerum and comparative analyses in papaveraceae. Genetics and Molecular Biology 43 (3): 1-10. https://doi.org/10.1590/1678-4685-GMB-2019-0272
  • Luo, Y., Ma, P.F., Li, H.T., Yang, J.B., Wang, H. & Li, D.Z. (2016) Plastid phylogenomic analyses resolve Tofieldiaceae as the root of the early diverging monocot order Alismatales. Genome Biology and Evolution 8 (3): 932-945. https://doi.org/10.1093/gbe/evv260
  • Ma, J., Yang, B.X., Zhu, W., Sun, L.L., Tian, J.K. & Wang, X.M. (2013) The complete chloroplast genome sequence of Mahonia bealei (Berberidaceae) reveals a significant expansion of the inverted repeat and phylogenetic relationship with other angiosperms. Gene 528 (2): 120-131. https://doi.org/10.1016/j.gene.2013.07.037
  • Maximowicz, C.J. (1878) Diagnoses de nouvelles plantes asiatiques. II . Bulletin de l'Acadeimie Impeiriale des Sciences de St.-Peitersbourg 24: 26-89.
  • Maximowicz, C.J. (1889) Flora Tangutica. 49 pp.
  • Maximowicz, C.J. (1889) In: Flora Tangutica. 49 T. 25 Figs. 1-5.
  • Matuda. (1950) In: Revista de la Sociedad Mexicana de Historia Natural 11: 91.
  • Mower, J.P. & Vickrey, T.L. (2018) Structural diversity among plastid genomes of land plants. Advances in Botanical Research 85: 263-292. https://doi.org/10.1016/bs.abr.2017.11.013
  • Palmer, J.D. & Thompson, W.F. (1982) Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost. Cell 29 (2): 537-550. https://doi.org/10.1016/0092-8674(82)90170-2
  • Palmer, J.D. (1983) Chloroplast DNA exists in two orientations. Nature 301 (5895): 92-93. https://doi.org/10.1038/301092a0
  • Park, S., An, B. & Park, S.J. (2018) Reconfiguration of the plastid genome in Lamprocapnos spectabilis: IR boundary shifting, inversion, and intraspecific variation. Scientific Reports 8 (1): 1-14. https://doi.org/10.1038/s41598-018-31938-w
  • Perez-Gutierrez, M.A., Romero-Garcia, A.T., Fernandez, M.C., Blanca, G., Salinas-Bonillo, M.J. & Suarez-Santiago, V.N. (2015) Evolutionary history of Fumitories (subfamily Fumarioideae, Papaveraceae): An old story shaped by the main geological and climatic events in the Northern Hemisphere. Molecular Phylogenetics and Evolution 88: 75-92. https://doi.org/10.1016/j.ympev.2015.03.026
  • Prain ex Fedde. (1925) In: Repertorium specierum novarum regni vegetabilis 22: 26.
  • Qi, W.K., Lin, F., Liu, Y.H., Huang, B.Q., Cheng, J.H., Zhang, W. & Zhao, H. (2016) High-throughput development of simple sequence repeat markers for genetic diversity research in Crambe abyssinica. BMC Plant Biology 16 (1): 1-11. https://doi.org/10.1186/s12870-016-0828-y
  • Qu, X.J., Moore, M.J., Li, D.Z. & Yi, T.S. (2019) PGA: A software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods 15 (1): 1-12. https://doi.org/10.1186/s13007-019-0435-7
  • Ren, F.M., Wang, Y.W., Xu, Z.C., Li, Y., Xin, T.Y., Zhou, J.G., Qi, Y.D., Wei, X.P., Yao, H. & Song, J.Y. (2019) DNA barcoding of Corydalis, the most taxonomically complicated genus of Papaveraceae. Ecology and Evolution 9 (4): 1934-1945. https://doi.org/10.1002/ece3.4886
  • Ren, F.M., Wang, L.Q., Li, Y., Zhuo, W., Xu, Z.C., Guo, H., Liu, Y., Gao, R.R. & Song, J.Y. (2021) Highly variable chloroplast genome from two endangered Papaveraceae lithophytes Corydalis tomentella and Corydalis saxicola. Ecology and Evolution 11 (9): 4158- 4171. https://doi.org/10.1002/ece3.7312
  • Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61 (3): 539-542. https://doi.org/10.1093/sysbio/sys029
  • Ruhlman, T.A., Chang, W.J., Chen, J.J.W., Huang, Y.T., Chan, M.T., Zhang, J., Liao, D.C., Blazier, J.C., Jin, X., Shih, M.C., Jansen, R.K. & Lin, C.S. (2015) NDH expression marks major transitions in plant evolution and reveals coordinate intracellular gene loss. BMC Plant Biology 15 (1): 1-9. https://doi.org/10.1186/s12870-015-0484-7
  • Salie, M.J. & Thelen, J.J. (2016) Regulation and structure of the heteromeric acetyl-CoA carboxylase. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids 1861 (9): 1207-1213. https://doi.org/10.1016/j.bbalip.2016.04.004
  • Sauquet, H., Carrive, L., Poullain, N., Sannier, J., Damerval, C. & Nadot, S. (2015) Zygomorphy evolved from disymmetry in Fumarioideae (Papaveraceae, Ranunculales): New evidence from an expanded molecular phylogenetic framework. Annals of Botany 115 (6): 895-914. https://doi.org/10.1093/aob/mcv020
  • Stamatakis, A. (2014) RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30 (9): 1312-1313. https://doi.org/10.1093/bioinformatics/btu033
  • Sun, Y.X, Moore, M.J., Zhang, S., Soltis, P.S., Soltis, D.E., Zhao, T., Meng, A., Li, X., Li, J. & Wang, H.C. (2016) Phylogenomic and structural analyses of 18 complete plastomes across nearly all families of early-diverging eudicots, including an angiosperm-wide analysis of IR gene content evolution. Molecular Phylogenetics and Evolution 96: 93-101. https://doi.org/10.1016/j.ympev.2015.12.006
  • Sun, Y.X, Moore, M.J., Lin, N., Adelalu, K.F., Meng, A., Jian, S., Yang, L., Li, J. & Wang, H.C. (2017) Complete plastome sequencing of both living species of Circaeasteraceae (Ranunculales) reveals unusual rearrangements and the loss of the ndh gene family. BMC Genomics 18 (1): 1-10. https://doi.org/10.1186/s12864-017-3956-3
  • Suyama, M., Torrents, D. & Bork, P. (2006) PAL2NAL: Robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research 34 (Web Server): W609-W612. https://doi.org/10.1093/nar/gkl315
  • Su, Z.Y. (1986) Sect. Hamatae, one new section of Corydalis from China. Acta Botanica Yunnanica 8 (4): 407-412.
  • Thiel, T., Michalek, W., Varshney, R.K. & Graner, A. (2003) Exploiting EST databases for the development and characterization of genederived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 106 (3): 411-422. https://doi.org/10.1007/s00122-002-1031-0
  • Walker, J.F., Jansen, R.K., Zanis, M.J. & Emery, N.C. (2015) Sources of inversion variation in the small single copy (SSC) region of chloroplast genomes. American Journal of Botany 102 (11): 1751-1752. https://doi.org/10.3732/ajb.1500299
  • Wang, D.P., Zhang, Y.B., Zhang, Z., Zhu, J. & Yu, J. (2010) KaKs_Calculator 2.0: A Toolkit Incorporating Gamma-Series Methods and Sliding Window Strategies. Genomics, Proteomics and Bioinformatics 8 (1): 77-80. https://doi.org/10.1016/S1672-0229(10)60008-3
  • Wang, T.P. (1934) In: Contributions from the Institute of Botany, National Academy of Peiping 2: 301.
  • Wang, Y.W. (2006) Systematics of Corydalis DC. (Fumariaceae). Institute of Botany, the Chinese Academy of Sciences, Beijing, 129 pp.
  • Wang, W.T. (1984) In: Fl. Beijing 1: 670.
  • Weng, M.L., Blazier, J.C., Govindu, M. & Jansen, R.K. (2014) Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Molecular Biology and Evolution 31 (3): 645-659. https://doi.org/10.1093/molbev/mst257
  • Willdenow, K.L. (1804) In: Species plantarum 3 (3): 1838.
  • Wu, C.S., Wang, Y.N., Liu, S.M. & Chaw, S.M. (2007) Chloroplast genome (cpDNA) of Cycas taitungensis and 56 cp protein-coding genes of Gnetum parvifolium: Insights into cpDNA evolution and phylogeny of extant seed plants. Molecular Biology and Evolution 24 (6): 1366-1379. https://doi.org/10.1093/molbev/msm059
  • Wu, J., Lin, P.C., Guo, Y.P. & Liu, M.D. (2020) The complete chloroplast genome of Corydalis conspersa. Mitochondrial DNA Part B: Resources 5 (2): 1977-1978. https://doi.org/10.1080/23802359.2020.1756944
  • Wu, Z.Y., Zhuang, X. & Su, Z.Y. (1996) The systematic evolution of Corydalis in relation to florogenesis and floristic regionalization in the world. Acta Botanica Yunnanica 18 (3): 241-267.
  • Wu, Z.Y., Zhuang, X. & Su, Z.Y. (1999) Corydalis DC. In: Wu, Z.Y. (Ed.) Florae Reipublicae Popularis Sinicae, vol. 32. Science Press, Beijing, China, pp. 106-479.
  • Wu, Z.Y., Zhuang, X. (1990) A New section of Corydalis, Sect. Davidianae. Acta Botanica Yunnanica 12 (3): 279-286.
  • Wu, S., Chen, J., Li, Y., Liu, A., Li, A., Yin, M., Shrestha, N., Liu, J. & Ren, G. (2021) Extensive genomic rearrangements mediated by repetitive sequences in plastomes of Medicago and its relatives. BMC Plant Biology 21 (1): 1-17. https://doi.org/10.1186/s12870-021-03202-3
  • Xi, Z., Rest, J.S. & Davis, C.C. (2013) Phylogenomics and coalescent analyses resolve extant seed plant relationships. PLoS ONE 8 (11): 21-24. https://doi.org/10.1371/journal.pone.0080870
  • Xia, M.Q., Liao, R.Y., Zhou, J.T., Lin, H.Y., Li, J.H., Li, P., Fu, C.X. & Qiu, Y.X. (2021) Phylogenomics and biogeography of Wisteria: Implications on plastome evolution among inverted repeat-lacking clade (IRLC) legumes. Journal of Systematics and Evolution 60 (2): 253-265. https://doi.org/10.1111/jse.12733
  • Xu, X.D. & Wang, D. (2018) Corydalis ternatifolia belongs to C. Sect. Asterostigmata, not C. sect. incisae (papaveraceae): Evidence from morphological and phylogenetic study. Phytotaxa 382 (2): 193-203. https://doi.org/10.11646/phytotaxa.382.2.4
  • Xu, X.D. & Wang, D. (2020) Characterization of the complete chloroplast genome of Corydalis inopinata Prain ex Fedde (Papaveraceae). Mitochondrial DNA Part B: Resources 5 (3): 3302-3303. https://doi.org/10.1080/23802359.2020.1814887
  • Xu, X.D. & Wang, D. (2021) Comparative Chloroplast Genomics of Corydalis Species (Papaveraceae): Evolutionary Perspectives on Their Unusual Large Scale Rearrangements. Frontiers in Plant Science 11: 600354. https://doi.org/10.3389/fpls.2020.600354
  • Yu, Z.Y., Zhou, T.H., Li, N.Y. & Wang, D. (2021) The complete chloroplast genome and phylogenetic analysis of Corydalis fangshanensis W. T. Wang ex S. Y. He (Papaveraceae). Mitochondrial DNA Part B: Resources 6 (11): 3171-3173. https://doi.org/10.1080/23802359.2021.1987172
  • Zhai, W., Duan, X.S., Zhang, R., Guo, C.C., Li, L., Xu, G.X., Shan, H.Y., Kong, H.Z. & Ren, Y. (2019) Chloroplast genomic data provide new and robust insights into the phylogeny and evolution of the Ranunculaceae. Molecular Phylogenetics and Evolution 135: 12-21. https://doi.org/10.1016/j.ympev.2019.02.024
  • Zhang, M.L., Su, Z.Y. & Liden, M. (2008) Corydalis DC. In: Wu, Z.Y., Raven, P.H. & Hong, D.Y. (Ed.) Flora of China, vol. 7. Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, pp. 295-427.
  • Zhang, Z.X., Wang, D. & Yang, X. (2016) The taxonomic position of Corydalis parviflora Su & Liden (Papaveraceae), a genetically distinct species: Evidence from cpDNA and nDNA sequences. Biochemical Systematics and Ecology 67: 134-141. https://doi.org/10.1016/j.bse.2016.06.003
  • Zhou, T., Ruhsam, M., Wang, J., Zhu, H.H., Li, W.L., Zhang, X., Xu, Y.C., Xu, F.S. & Wang, X.M. (2019) The Complete Chloroplast Genome of Euphrasia regelii, Pseudogenization of ndh Genes and the Phylogenetic Relationships within Orobanchaceae. Frontiers in Genetics 10: 444. https://doi.org/10.3389/fgene.2019.00444