Published June 1, 2022 | Version 1.0
Dataset Open

DCASE 2022 Challenge Task 2 Evaluation Dataset

Description

Description

This dataset is the "evaluation dataset" for the DCASE 2022 Challenge Task 2 "Unsupervised Anomalous Sound Detection for Machine Condition Monitoring Applying Domain Generalization Techniques".

 

Condition of use

This dataset was created jointly by Hitachi, Ltd. and NTT Corporation and is available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.

 

Citation

If you use this dataset, please cite all the following three papers. 

  • Kota Dohi, Keisuke Imoto, Noboru Harada, Daisuke Niizumi, Yuma Koizumi, Tomoya Nishida, Harsh Purohit, Takashi Endo, Masaaki Yamamoto, Yohei Kawaguchi, Description and Discussion on DCASE 2022 Challenge Task 2: Unsupervised Anomalous Sound Detection for Machine Condition Monitoring Applying Domain Generalization Techniques. In arXiv e-prints: 2206.05876, 2022. [URL]
  • Kota Dohi, Tomoya Nishida, Harsh Purohit, Ryo Tanabe, Takashi Endo, Masaaki Yamamoto, Yuki Nikaido, and Yohei Kawaguchi. MIMII DG: sound dataset for malfunctioning industrial machine investigation and inspection for domain generalization task. In arXiv e-prints: 2205.13879, 2022. [URL]
  • Noboru Harada, Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Masahiro Yasuda, and Shoichiro Saito. ToyADMOS2: another dataset of miniature-machine operating sounds for anomalous sound detection under domain shift conditions. In Proceedings of the 6th Detection and Classification of Acoustic Scenes and Events 2021 Workshop (DCASE2021), 1–5. Barcelona, Spain, November 2021. [URL]

Contact

If there is any problem, please contact us:

Files

eval_data_bearing_test.zip

Files (1.0 GB)

Name Size Download all
md5:47518a98084260c11fa61ce9a0c54b7c
138.9 MB Preview Download
md5:5b1398524c46a67badf5e94b903c3d84
148.0 MB Preview Download
md5:768c162d3d2bb5147127a2965d54c2ca
150.9 MB Preview Download
md5:b2901b49bc001d6446d470260d32db64
153.6 MB Preview Download
md5:3c52961e75d60623a40b9dcc47ec1009
157.2 MB Preview Download
md5:7df19e597a47b7cc1028969b6330be0f
151.5 MB Preview Download
md5:372c723bb3112340a880c282f5171775
137.8 MB Preview Download