There is a newer version of the record available.

Published May 22, 2022 | Version 115
Dataset Open

A large-scale COVID-19 Twitter chatter dataset for open scientific research - an international collaboration

  • 1. Georgia State University
  • 2. University of Missouri
  • 3. Universitat Autònoma de Barcelona
  • 4. Carl von Ossietzky Universität Oldenburg
  • 5. Universität Duisburg-Essen
  • 6. NRU HSE
  • 7. KFU

Description

Version 115 of the dataset. MAJOR CHANGE NOTE: The dataset files: full_dataset.tsv.gz and full_dataset_clean.tsv.gz have been split in 1 GB parts using the Linux utility called Split. So make sure to join the parts before unzipping. We had to make this change as we had huge issues uploading files larger than 2GB's (hence the delay in the dataset releases). The peer-reviewed publication for this dataset has now been published  in Epidemiologia an MDPI journal, and can be accessed here: https://doi.org/10.3390/epidemiologia2030024. Please cite this when using the dataset.

Due to the relevance of the COVID-19 global pandemic, we are releasing our dataset of tweets acquired from the Twitter Stream related to COVID-19 chatter. Since our first release we have received additional data from our new collaborators, allowing this resource to grow to its current size. Dedicated data gathering started from March 11th yielding over 4 million tweets a day. We have added additional data provided by our new collaborators from January 27th to March 27th, to provide extra longitudinal coverage. Version 10 added ~1.5 million tweets in the Russian language collected between January 1st and May 8th, gracefully provided to us by: Katya Artemova (NRU HSE) and Elena Tutubalina (KFU). From version 12 we have included daily hashtags, mentions and emoijis and their frequencies the respective zip files. From version 14 we have included the tweet identifiers and their respective language for the clean version of the dataset. Since version 20 we have included language and place location for all tweets.

The data collected from the stream captures all languages, but the higher prevalence are:  English, Spanish, and French. We release all tweets and retweets on the full_dataset.tsv file (1,338,836,122 unique tweets), and a cleaned version with no retweets on the full_dataset-clean.tsv file (346,332,294 unique tweets). There are several practical reasons for us to leave the retweets, tracing important tweets and their dissemination is one of them. For NLP tasks we provide the top 1000 frequent terms in frequent_terms.csv, the top 1000 bigrams in frequent_bigrams.csv, and the top 1000 trigrams in frequent_trigrams.csv. Some general statistics per day are included for both datasets in the full_dataset-statistics.tsv and full_dataset-clean-statistics.tsv files. For more statistics and some visualizations visit: http://www.panacealab.org/covid19/ 

More details can be found (and will be updated faster at: https://github.com/thepanacealab/covid19_twitter) and our pre-print about the dataset (https://arxiv.org/abs/2004.03688

As always, the tweets distributed here are only tweet identifiers (with date and time added) due to the terms and conditions of Twitter to re-distribute Twitter data ONLY for research purposes. They need to be hydrated to be used.

Notes

This dataset will be updated bi-weekly at least with additional tweets, look at the github repo for these updates. Release: We have standardized the name of the resource to match our pre-print manuscript and to not have to update it every week.

Files

emojis.zip

Files (15.3 GB)

Name Size Download all
md5:6aa0ade852f9d9029e770af031b88155
12.6 MB Preview Download
md5:7ba2b29b7e1b798a16c3e505c925498a
18.4 kB Preview Download
md5:2c2416c7505985dbe377309c9cce7c17
11.6 kB Preview Download
md5:8eea8d20ccee3efb209b41dbfb43797e
25.8 kB Preview Download
md5:e4fe1126f78b1458159e96dba2bf9bee
16.1 kB Download
md5:ec6685ab0331a0669cfa27d1c84c98a1
1.1 GB Download
md5:fd1ff1613d8788b28b089e056537260e
1.1 GB Download
md5:d81418788e8ff43d193cb57c17d2d968
1.1 GB Download
md5:0b52698f94ad1aae76c8085a731b4404
1.1 GB Download
md5:b6bd17bf6d19a6231a18dc85f0720ef6
1.1 GB Download
md5:72107f23843969a96c1291cc14e57c23
1.1 GB Download
md5:3876d43286e718e86e47fb86ebc9f647
1.1 GB Download
md5:a570c8240acbad68ed295d8253bd1400
1.1 GB Download
md5:725e4bd57e45cf42525224ff5fe642e3
1.1 GB Download
md5:9b394695b196566fcdd13f14ab2fd3f0
1.1 GB Download
md5:3bfb1381f9c5ee1414950b16f591a81e
726.5 MB Download
md5:e97b841a119b90774252906c2ec05d68
15.6 kB Download
md5:b50352f1171751b62f7d39dcc00db459
1.1 GB Download
md5:222e3a9b3758c119db0a0e75c8f7d582
1.1 GB Download
md5:b67f3a9ab518fb275b66eac4abc2e29c
1.1 GB Download
md5:0142724db58fd7bd9bcb057be2f8715e
93.7 MB Download
md5:db6a775aed0edc82d42885fe3683415e
190.4 MB Preview Download
md5:22fe896ddc01523a7bd7083cc2d20274
316.5 MB Preview Download

Additional details

Related works

Is continued by
Other: http://www.panacealab.org/covid19/ (URL)
Is supplement to
Preprint: https://arxiv.org/abs/2004.03688 (URL)