Published May 19, 2022 | Version v1
Journal article Restricted

Trichoderma bombaxalis sp. nov., isolated from rhizosphere soils of Lycium barbarum

  • 1. School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, P.R.China. & State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China. & ys202021139@outlook.com; https://orcid.org/0000-0003-2860-3463
  • 2. School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, P.R. China. & amwangrui@126.com; https://orcid.org/0000-0003-4745-3181
  • 3. State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China. & liuhw@im.ac.cn; https://orcid.org/0000-0001-6471-131X
  • 4. School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China. & syzxalice@163.com; https://orcid.org/0000-0001-7160-1098
  • 5. State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China. & sunjz@im.ac.cn; https://orcid.org/0000-0003-1893-1869

Description

Yu, Shuang, Wang, Rui, Liu, Hong-Wei, Zhang, Xue, Sun, Jing-Zu (2022): Trichoderma bombaxalis sp. nov., isolated from rhizosphere soils of Lycium barbarum. Phytotaxa 547 (2): 147-157, DOI: 10.11646/phytotaxa.547.2.2

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:1146EF3FAC60FFB3FFC8FFD6847F7D63
URL
http://publication.plazi.org/id/1146EF3FAC60FFB3FFC8FFD6847F7D63

References

  • Cai, F. & Druzhinina, I.S. (2021) In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma. Fungal Diversity 107: 1-69. https://doi.org/10.1007/s13225-020-00464-4
  • Carbone, I & Kohn, L.M. (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553-556. https://doi.org/10.1080/00275514.1999.12061051
  • Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17 (4): 540-552. https://doi.org/10.1093/oxfordjournals.molbev.a026334
  • Chaverri, P., Castlebury, L.A., Samuels, G.J. & David, M.G. (2003) Multilocus phylogenetic structure within the Trichoderma harzianum/ Hypocrea lixii complex. Molecular Phylogenetics and Evolution 27 (2): 302-313. https://doi.org/10.1016/S1055-7903(02)00400-1
  • Chaverri, P., Branco-Rocha, F., Jaklitsch, W., Gazis, R., Degenkolb, T. & Samuels, G.J. (2015) Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 107 (3): 558-590. https://doi.org/10.3852/14-147
  • du Plessis, I.L., Druzhinina, I.S., Atanasova, L., Yarden, O. & Jacobs, K. (2018) The diversity of Trichoderma species from soil in South Africa, with five new additions. Mycologia 110: 559-583. https://doi.org/10.1080/00275514.2018.1463059
  • Edwards, J.C., Johnson, C., Santos-Medellin, E.L., Podishetty, N.K., Bhatnagar, S., Eisen, J.A. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America 112: E911-20. https://doi.org/10.1073/pnas.1414592112
  • Ferreira, F.V., Herrmann-Andrade, A.M., Calabrese, C.D., Bello, F., Vazquez, D. & Musumeci, M.A. (2020) Effectiveness of Trichoderma strains isolated from the rhizosphere of citrus tree to control Alternaria alternata, Colletotrichum gloeosporioides and Penicillium digitatum A21 resistant to pyrimethanil in post-harvest oranges (Citrus sinensis L. (Osbeck)). Journal of Applied Microbiology 129: 712-727. https://doi.org/10.1111/jam.14657
  • Gu, X., Wang, R., Sun, Q., Wu, B. & Sun, J.Z. (2020) Four new species of Trichoderma in the Harzianum clade from northern China. MycoKeys 73: 109-132. https://doi.org/10.3897/mycokeys.73.51424
  • Guzman-Guzman, P., Porras-Troncoso, M.D., Olmedo-Monfil, V. & Herrera-Estrella, A. (2019) Trichoderma species: versatile plant symbionts. Phytopathology 109: 6-16. https://doi.org/10.1094/PHYTO-07-18-0218-RVW
  • Jaklitsch, W.M. (2009) European species of Hypocrea Part I. The green-spored species. Studies in Mycology 63: 1-91. https://doi.org/10.3114/sim.2009.63.01
  • Jaklitsch, W.M. (2011) European species of Hypocrea part II: species with hyaline ascospores. Fungal Diversity 48: 1-250. https://doi.org/10.1007/s13225-011-0088-y
  • Jaklitsch, W.M., Komon, M., Kubicek, C.P. & Druzhinina, I.S. (2017) Hypocrea voglmayrii sp. nov. from the Austrian Alps represents a new phylogenetic clade in Hypocrea/Trichoderma. Mycologia 97: 1365-1378. http://doi.org/10.1080/15572536.2006.11832743
  • Jang, S., Jang, Y., Kim, C.W., Lee, H., Hong, J.H., Heo, Y.M., Lee, Y.M., Lee, D.W., Lee, H.B. & Kim, J.J. (2017) Five new records of soilderived Trichoderma in Korea: T. albolutescens, T. asperelloides, T. orientale, T. spirale, and T. tomentosum. Mycobiology 45: 1-8. https://doi.org/10.5941/MYCO.2017.45.1.1
  • Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772-780. https://doi.org/10.1093/molbev/mst010
  • Liu, B., Ji, S., Zhang, H., Wang, Y. & Liu, Z. (2020) Isolation of Trichoderma in the rhizosphere soil of Syringa oblata from Harbin and their biocontrol and growth promotion function. Microbiological Research 235: 126445. https://doi.org/10.1016/j.micres.2020.126445
  • Liu, J.J., Whelen, S. & Hall, B.D. (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolut ion 16: 1799-1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
  • Na, X.F, Ma, S., Ma, C., Liu, Z., Xu, P., Zhu, H., Liang, W. & Kardol, P. (2021) Lycium barbarum L. (goji berry) monocropping causes microbial diversity loss and induces Fusarium spp. enrichment at distinct soil layers. Applied Soil Ecology 168: 104-107. https://doi.org/10.1016/j.apsoil.2021.104107
  • Nandini, B., Puttaswamy, H., Saini, R.K., Prakash, H.S. & Geetha, N. (2021) Trichovariability in rhizosphere soil samples and their biocontrol potential against downy mildew pathogen in pearl millet. Scientifc Reports 11: 9517. https://doi.org/10.1038/s41598-021-89061-2
  • Nylander, J.A.A. (2004) MrModeltest v2. Program distributed by the author. Available from: https://github.com/nylander/MrModeltest2
  • Overton, B.E., Stewart, E.L. & Geiser, D.M. (2006) Taxonomy and phylogenetic relationships of nine species of Hypocrea with an amorphs assignable to Trichoderma section Hypocreanum. Studies in Mycology 56: 39-65. https://doi.org/10.3114/sim.2006.56.02
  • Peciulyte, A., Anasontzis, G.E., Karlstrom, K., Larsson, P.T. & Olsson, L. (2014) Morphology and enzyme production of Trichoderma reesei Rut C-30 are affected by the physical and structural characteristics of cellulosic substrates. Fungal Genetics and Biology 72: 64-72. https://doi.org/10.1016/j.fgb.2014.07.011
  • Rambaut, A. (2012) FigTree version 1.4.0. Program distributed by the author. Available from: http://tree.bio.ed.ac.uk/software/figtree/ (accessed 18 May 2022)
  • Riley, D. & Barber, S.A. (1970) Salt accumulation at the soybean (Glycine max ( L. ) Merr.) root-soil interface. Soil Science Society of America Journal 34 (1): 154-155. https://doi.org/10.2136/sssaj1970.03615995003400010042x
  • Ronquist, F., Teslenko, M., Mark, P., Ayres, D.L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539- 542. https://doi.org/10.1093/sysbio/sys029
  • Ryu, S.M., Lee, H.M., Song, E.G., Seo, Y.H., Lee, J., Guo, Y., Kim, B.S., Kim, J.J., Hong, J.S., Ryu, K.H. & Lee, D. (2017) Antiviral activities of trichothecenes isolated from Trichoderma albolutescens against pepper mottle virus. Journal of Agricultural and Food Chemistry 65: 4273-4279. https://doi.org/10.1021/acs.jafc.7b01028
  • Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-2690. https://doi.org/10.1093/bioinformatics/btl446
  • Strakowska, J., Blaszczyk, L. & Chelkowski, J. (2014) The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus. Journal of Basic Microbiology 54: S2-S13. https://doi.org/10.1002/jobm.201300821
  • Swain, H., Adak, T., Mukherjee, A.K., Mukherjee, P.K., Bhattacharyya, P., Behera, S., Bagchi, T.B., Patro, R., Khandual, A., Bag, M.K., Dangar, T.K. & Jena, M. (2018) Novel Trichoderma strains isolated from tree barks as potential biocontrol agents and biofertilizers for direct seeded rice. Microbiological Research 214: 83-90. https://doi.org/10.1016/j.micres.2018.05.015
  • White, T.J., Bruns, T., Lee, S. & Taylor, J.W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (Eds.) PCR Protocols: a Giude to Methods and Application. Academic Press, San Diego, USA, pp. 315-322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  • Zhang, J.H., Li, M., Jia, K.L., Zheng, G.Q. & Long, X.E. (2018) Seasonal variation rather than stand age determines bacterial diversity in the rhizosphere of wolfberry (Lycium barbarum L.) associated with soil degradation. Journal of Soils and Sediments 18: 1518- 1529. https://doi.org/10.1007/s11368-017-1854-6
  • Zhang, R. & Wang, D. (2012) Trichoderma spp. from rhizosphere soil and their antagonism against Fusarium sambucinum. African Journal of Biotechnology 11 (18): 4180-4186. https://dx.doi.org/10.5897/ajb11.3426
  • Zhang, Y.J., Zhang, S., Liu, X.Z., Wen, H.A. & Wang, M. (2010) A simple method of genomic DNA extraction suitable for analysis of bulk fungal strains. Letters in Applied Microbiology 51: 114-118. https://doi.org/10.1111/j.1472-765X.2010.02867.x