Dataset Open Access

Inference products for "Finite inflation in curved space"

Hergt, Lukas Tobias

These are the MCMC and nested sampling inference products and input files that were used to compute results for the paper "Finite inflation in cuved space" by L. T. Hergt, F. J. Agocs, W. J. Handley, M. P. Hobson, and A. N. Lasenby from 2022.

Example plotting scripts (as \(\texttt{.ipynb}\) or as \(\texttt{.html}\) files) and figures from the paper are included to demonstrate usage.

 

We used the following python packages for the genertion of MCMC and nested sampling chains:

Package Version
anesthetic 2.0.0b12
classy 2.9.4
cobaya 3.0.4
GetDist 1.3.3
primpy 2.3.6
pyoscode 1.0.4
pypolychord 1.20.0

 

 

 

 

 

 

 

 

 

 

Filename conventions:

  • \(\texttt{mcmc}\): MCMC run
  • \(\texttt{pcs#d####}\): PolyChord run (in synchronous mode) with \(\texttt{#d}\) repeats per parameter block (where \(\texttt{d}\) is the number of parameters in that block) and with \(\texttt{####}\) live points.
  • \(\texttt{_cl_hf}\): Using Boltzmann theory code CLASS with nonlinearities code halofit.
  • \(\texttt{_p18}\): Using Planck 2018 CMB data.
  • \(\texttt{_TTTEEE}\): Using the high-l TTTEEE likelihood.
  • \(\texttt{_TTTEEElite}\): Using the lite version of the high-l TTTEEE likelihood.
  • \(\texttt{_lowl_lowE}\): Using the low-l likelihoods for temperature and E-modes.
  • \(\texttt{_BK15}\): Using data from the 2015 observing season of Bicep2 and the Keck Array.
  • \(\texttt{lcdm}\): Concordance cosmological model called LCDM (standard 6 cosmological sampling parameters, no tensor perturbations, zero spatial curvature)
  • \(\texttt{_r}\): Extension with a variable tensor-to-scalar ratio \(r\).
  • \(\texttt{_omegak}\): Extension with a variable curvature density parameter \(\Omega_K \).
  • \(\texttt{_H0}\): Sampling over \(H_0\) instead of \(\theta_\mathrm{s}\).
  • \(\texttt{_omegakh2}\): Extension with a variable curvature density parameter, but sampling over \(H_0\) instead of \(\theta_\mathrm{s}\) and over \(\omega_K\equiv\Omega_Kh^2\) instead of \(\Omega_K \).
  • \(\texttt{_mn2}\): Using a quadratic monomial potential for the computation of the primordial universe.
  • \(\texttt{_nat}\): Using the natural inflation potential for the computation of the primordial universe.
  • \(\texttt{_stb}\): Using the Starobinsky potential for the computation of the primordial universe.
  • \(\texttt{_AsfoH}\): Using the primordial sampling parameters {`logA_SR`, `N_star`, `f_i`, `omega_K`, `H0`}.
  • \(\texttt{_perm}\): Assuming a permissive reheating scenario.

 

 

Files (2.5 GB)
Name Size
finite_inflation_curved_space_data.zip
md5:5314bb1611db61406354c44469384a52
2.5 GB Download
53
5
views
downloads
All versions This version
Views 5353
Downloads 55
Data volume 12.3 GB12.3 GB
Unique views 4545
Unique downloads 44

Share

Cite as