File uploads: We have fixed an issue which caused file uploads to fail. We apologise for the inconvenience it may have caused.

Published April 30, 2022 | Version v1
Journal article Open

Improving the strength of composite material through the effective modification of the surface of the cellulose filler

  • 1. International Educational Corporation (KazGASA)

Description

An effective technique has been devised in order to increase the strength of arbolite, based on the method of rice husk thermal treatment. Given the fading of the surface layer of the grains during thermal exposure, the accompanying elements are removed from the outer cellulose fibers of the husk structure, that is, the texture of the surface of the material changes. It is known that the strength of multicomponent materials depends on the strength of bonds between the structural elements and the strength of the elements themselves. In arbolite, the strength of the constituent elements is great but the strength of arbolite almost does not exceed 2.5–3.5 MPa. Therefore, one of the factors determining the strength of arbolite is the adhesion strength of its heterogeneous particles. Therefore, a necessary and mandatory condition for the preparation of rice husks is soaking them in water, as well as the use of chemical additives for their treatment. This study's results established that the surface of the modified rice husk is chemically more active than without treatment. The use of chemical additives made it possible to neutralize the effect of extractive aggregates on cement due to the formation of additional chemical bonds in the contact zone and reduce their toxic effect on cement when removed from this zone. As a result of thermal exposure, a new potential property is revealed in the rice husk, which is expressed in the modification of the husk by changing the texture of its surface, which, when mixed with cement, enhances the adhesive adhesion of the surfaces. The rice husk thermal treatment method was employed to increase the class of arbolite to B 2.0 in terms of compressive strength, that is, arbolite of structural purpose was obtained, used as load-bearing structures in low-rise construction

Files

Improving the strength of composite material through the effective modification of the surface of the cellulose filler.pdf

Additional details

References

  • Ryb'ev, I. A. (2018). Stroitel'noe materialovedenie. Ch. 1. Moscow: Yurayt, 276.
  • Afanas'ev, A. E., Efremov, A. S. (2011). Vliyanie strukturoobrazovaniya na plotnost' zhidkosti kolloidnykh kapillyarno-poristykh tel. Teoreticheskie osnovy khimicheskoy tekhnologii, 45 (1), 119–125.
  • Schukin, E. D., Pertsov, A. V., Amelina, E. A. (2004). Kolloidnaya khimiya: uchebnik dlya universitetov i khimiko-tekhnologicheskikh vuzov. Moscow: Vysshaya shkola, 445.
  • Suzuki, M. (2001). Pat. No. 2186797 RF. Kompozitsionnye sostavy s vysokoy absorbtsionnoy sposobnost'yu, absorbiruyuschiy listovoy material, pokrytiy takimi sostavami, i sposob ego izgotovleniya. No. 99114787/04; declareted: 15.12.1997; published: 20.07.2001.
  • Barkovskiy, E. V., Tkachev, S. V., Pansevich, L. I., Latushko, T. V., Bolbas, O. P. (2009). Osnovy biofizicheskoy i kolloidnoy khimii. Minsk: Vysheyshaya shkola, 272.
  • Fedyaeva, O. A. (2007). Promyshlennaya ekologiya. Omsk: Izdatel'stvo OmGTU, 145.
  • Fedyaeva, O. A. (2007). Promyshlennaya ekologiya. Omsk: Izdatel'stvo OmGTU, 145.
  • Rusanov, A. I., Schekin, A. K. (2016). Mitselloobrazovanie v rastvorakh poverkhnostno-aktivnykh veschestv. Sankt-Peterburg: OOO Izdatel'stvo «Lan'», 612.
  • Uderbaev, S. S., Alibekov, N. B., Onaybekov, B. K. (2017). Issledovanie sistemy «tsellyuloznyy zapolnitel' – vyazhuschee» v strukture arbolita. Materiály XIII Mezinárodní vĕdecko – praktická konference, «Vĕda a technologie: krok do budoucnosti – 2017», 64–68.
  • Akimova, N. V., Shepelenko, T. S., Sarkisov, D. Yu. (2015). Corrosive effect of sucrose on structure formation of cement/water system. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta, 6 (53), 128–134.
  • Kudyakov, A. I., Simakova, A. S., Kondratenko, V. A., Steshenko, A. B., Latypov, A. D. (2019). Cement paste and brick properties modified by organic additives. Vestnik Tomskogo Gosudarstvennogo Arkhitekturno-Stroitel'nogo Universiteta. JOURNAL of Construction and Architecture, 6, 138–147. doi: https://doi.org/10.31675/1607-1859-2018-20-6-138-147
  • Burenina, O. N., Davydova, N. N., Andreeva, A. V. (2015). Issledovanie vliyaniya kompleksnykh mineral'nykh modifitsiruyuschikh dobavok, vklyuchaya nanodobavki, na svoystva melkodispersnogo betona. Aktual'nye voprosy tekhnicheskikh nauk: materialy III Mezhdunar. nauch. konf. Perm': Zebra, 101–104.
  • Hueller, F., Naber, C., Neubauer, J., Goetz-Neunhoeffer, F. (2018). Impact of initial CA dissolution on the hydration mechanism of CAC. Cement and Concrete Research, 113, 41–54. doi: https://doi.org/10.1016/j.cemconres.2018.06.004
  • Danner, T. A., Yustnes, G., Geyker, M. R., Lauten, R. A. (2016). Vliyanie lignosul'fonatnykh plastifikatorov na gidratatsiyu C3A. Tsement i ego primenenie, 3, 76–80.
  • Egbe, J. (2018). Investigation of Rice Husk Ash (RHA) as a Supplement in Cement for Building Applications. Civil Engineering Research Journal, 6 (2). doi: https://doi.org/10.19080/cerj.2018.06.555681
  • Khaziakhmedova, R. M., Grachev, A. N., Bashkirov, V. N., Valiullina, A. I., Slobozhaninova, M. V. (2021). Interaction of adhesive with substrate surface in composite materials based on lignocellulose raw materials. Prom. Proizvod. Ispol'z. Elastomerov, 3, 58–62. doi: https://doi.org/10.24412/2071-8268-2021-3-58-62
  • Kim, H. M., Sung, Y. J., Park, Y. S., Shin, J. C., Seo, Y. K. (2016). Changes in Rice Husk by Heat Treatment. Journal of Korea Technical Association of the Pulp and Paper Industry, 48 (6), 263. doi: https://doi.org/10.7584/jktappi.2016.12.48.6.263
  • Ye, H. (2015). Creep Mechanisms of Calcium–Silicate–Hydrate: An Overview of Recent Advances and Challenges. International Journal of Concrete Structures and Materials, 9 (4), 453–462. doi: https://doi.org/10.1007/s40069-015-0114-7
  • Bazhenov, Yu. M. (2015). Tekhnologiya betona. Moscow: Izdatel'stvo ASV, 528.
  • Urhanova, L. A., Efremenko, A. S. (2011). Structural light-weight concretes on roasting-free porous aggregates. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta, 1 (48), 100–103.
  • Adilhodzhaev, A. I., Igamberdiev, B. G. (2020). Interaction of adhesive with the substrate surface in a composite material based on modified gypsum and treated rice straw. Problemy sovremennoy nauki i obrazovaniya, 11–18. doi: https://doi.org/https://doi.org/10.24411/2304-2338-2020-10606
  • Usov, B. A. (2016). Khimiya i tekhnologiya tsementa. Moscow: Infra-M, 158.
  • Solov'ev, V. G., Korovyakov, V. F., Larsen, O. A., Gal'tseva, N. A. (2020). Kompozitsionnye materialy v stroitel'stve. Moscow: Izdatel'stvo MISI – MGSU. Available at: https://mgsu.ru/universityabout/Struktura/Kafedri/TVViB/mmaterials/Композиционные%20материалы%20в%20строительстве_уч.пособ.pdf
  • Lotov, V. A. (2018). Interaction of cement particles with water or mechanism of hydration and hardening of cement. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 329 (1), 99–110.
  • Pshenichniy, G. N. (2019). Stroitel'nye materialy i izdeliya: tekhnologiya aktivirovannykh betonov. Moscow: Izdatel'stvo Yurayt, 224.
  • Rudnov, V. S. et. al. (2018). Stroitel'nye materialy i izdeliya. Ekaterinburg: Izd-vo Ural. un-ta, 203.
  • Azarov, V. I., Burov, A. V., Obolenskaya, A. V. (2021). Khimiya drevesiny i sinteticheskikh polimerov. Sankt-Peterburg: Lan', 624.
  • Espaeva, A. S. (2011). Tekhnologiya plitnykh materialov. Almaty: TOO RPIK «Dəuіr», 488.
  • Izraelashvili, Dzh. (2011). Mezhmolekulyarnye i poverkhnostnye sily. Moscow: Nauchniy mir, 456.
  • Shuldyakov, K. V., Kramar, L. Ya., Trofimov, B. Ya., Makhmudov, A. M. (2020). Structure and Properties of Hardened Cement Paste with Modifying Agents. Bulletin of the South Ural State University. Ser. Construction Engineering and Architecture, 20 (2), 54–64. doi: https://doi.org/10.14529/build200208
  • Efremenko, A. S. (2019). Vysokoprochnye legkie betony na osnove tonkomolotykh kompozitsionnykh vyazhuschikh s ispol'zovaniem zol terrikonikov. Sankt-Petrburg: Naukoemkie tekhnologii, 128.
  • Abu Маhadi, М. I., Bezborodov, А. V. (2017). Application slag-alkali binder in construction. RUDN Journal of Engineering Researches, 18 (2), 212–218. doi: https://doi.org/10.22363/2312-8143-2017-18-2-212-218
  • Sarsenbaev, B. K., Momyshev, T. A., Iskakov, T. U., Sarsenbaev, N. B., Aubakirova, T. S. (2012). Proizvodstvo shlakoschelochnykh vyazhuschikh i betonov na ikh osnove. Stroitel'nye matreialy, 56–57. Available at: https://cyberleninka.ru/article/n/proizvodstvo-shlakoschelochnyh-vyazhuschih-i-betonov-na-ih-osnove
  • Nanazashvili, I. Kh. (1990). Stroitel'nye materialy iz drevesno-tsementnoy kompozitsii. Leningrad, 415.
  • Terent'eva, E. P., Udovenko, N. K., Pavlova, E. A. (2015). Khimiya drevesiny, tsellyulozy i sinteticheskikh polimerov. Ch. 2. Sankt-Petrburg, 83.
  • Volynskiy, V. N. (2007). Tekhnologiya drevesnykh plit. Arkhangel'sk, 300.
  • Tyalina, L. N. (2011). Novye kompozitsionnye materialy. Tambov: GOU VPO TGTU, 80.
  • Nanazashvili, I. Kh. (1990). Stroitel'nye materialy iz drevesnotsementnoy kompozitsii. Leningrad: Stroyizdat, 415.
  • Uderbaev, S. S., Karibaev, E., Kurmanaeva, Zh. M. (2014). Issledovanie adgezii risovoy luzgi s zolotsementnymi vyazhuschimi smesyami. Molodoy ucheniy, 12 (71), 113–114.