Published June 17, 2022
| Version v1
Dataset
Open
HelixNet: A Dataset for Online LiDAR Segmentation
Creators
- 1. LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, France - LASTIG, Univ. Gustave Eiffel, ENSG, IGN, F-94160 Saint-Mande, France
- 2. LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, France
- 3. LASTIG, Univ. Gustave Eiffel, ENSG, IGN, F-94160 Saint-Mande, France
Description
Large-scale and open-access LiDAR dataset intended for the evaluation of real-time semantic segmentation algorithms. In contrast to other large-scale datasets, HelixNet includes fine-grained data about the sensor's rotation and position, as well as the points' release time.
You can download sequences individually or use zenodo-get to download all sequences at once:
pip install zenodo-get
zenodo-get 6519817
See companion github repository and the dedicated wepage for more information.
Cite as:
@article{loiseau22online,
title={Online Segmentation of LiDAR Sequences: Dataset and Algorithm.},
author={Romain Loiseau and Mathieu Aubry and Loic Landrieu},
journal={ECCV},
year={2022}
}
Acknowledgements :
- This work was supported by ANR project READY3D ANR-19-CE23-0007.
- The point cloud sequence of HelixNet was acquired during the Stereopolis II project. (N. Paparoditis et al. "Stereopolis II: A multi-purpose and multi-sensor 3D mobile mapping system for street visualisation and 3D metrology." Revue française de photogrammétrie et de télédétection, 2012)
- HelixNet was annotated by FUTURMAP.
- We thank Zenodo for hosting the dataset.
Files
1.zip
Files
(235.9 GB)
Name | Size | Download all |
---|---|---|
md5:3a5a8f8cec84d1f702637a28b157ad99
|
11.2 GB | Preview Download |
md5:78b2611c1f26221ca85271581a593466
|
12.0 GB | Preview Download |
md5:82086f66c54d61c55c0e505394aafc8c
|
11.9 GB | Preview Download |
md5:ce85f22a1b6f413f5c56b440f58e08c9
|
11.8 GB | Preview Download |
md5:1692a2b278aa3d2839c554d8bab0e94b
|
13.0 GB | Preview Download |
md5:ddc804586e72020c547f676b2f18a971
|
12.8 GB | Preview Download |
md5:d9603a1a2c77f953feed67409820e937
|
11.1 GB | Preview Download |
md5:d4b07f8ddd61e93f85ae6b9c56ab5708
|
11.9 GB | Preview Download |
md5:89db7557b9ee9e85b07f91cf902d8553
|
11.9 GB | Preview Download |
md5:731a98e945b5ebea7bbd77c3200cde81
|
12.0 GB | Preview Download |
md5:f9738ec8795dd5f49b5f703ed7406583
|
11.9 GB | Preview Download |
md5:79a79762757978cb1ff148309773e67c
|
11.3 GB | Preview Download |
md5:01b7e58833caa54b42c9bb31ccb608c9
|
11.8 GB | Preview Download |
md5:6bb3bc40d7f1ee3e5aea12d60d726323
|
12.0 GB | Preview Download |
md5:e32ae580594565b4f87dd478aeda6ded
|
11.2 GB | Preview Download |
md5:ec18e4a0544695dcf01dda34b1ae91a2
|
11.7 GB | Preview Download |
md5:420765b045c402010a8863495f5e2415
|
12.5 GB | Preview Download |
md5:9f43195c45cc50529e4d5b2a28cfdc12
|
11.0 GB | Preview Download |
md5:a28ec5541ebebf9e06c59899180f5358
|
10.9 GB | Preview Download |
md5:3303e2448ca543dadd198712ce159533
|
11.9 GB | Preview Download |
Additional details
Funding
- Agence Nationale de la Recherche
- READY3D – Real-Time Analysis of Dynamic LiDAR 3D Point Clouds ANR-19-CE23-0007