Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published April 8, 2022 | Version v1
Dataset Open

Detecting and Suppressing Marine Snow for Underwater Visual SLAM

  • 1. Norwegian University of Science and Technology

Description

Conventional SLAM methods which work very well in typical above-water situations, are based on detecting keypoints that are tracked between images, from which ego-motion and the 3D structure of the scene is estimated.
However, in underwater environments with marine snow — small particles of organic matter which are carried by ocean currents throughout the water column — keypoint detectors are prone to detect the marine snow particles. As the vast majority of SLAM front ends are sensitive against outliers, and the marine snow acts as severe “motion noise”, failure of the regular egomotion and 3D structure estimation is expected. For this reason, we investigate the structure and appearance of marine snow and developed two schemes which classify keypoints into ”marine snow” or ”clean” based on either the image patches obtained from usual keypoint detectors or the descriptors computed from these patches. This way the subsequent SLAM pipeline is protected against ’false’ keypoints. We quantitatively evaluate the performance of our marine snow classifier on both real underwater video scenes as well as on simulated underwater footage that contains marine snow. These simulated image sequences have been created by extracting real marine snow elements from real underwater footage, and subsequently overlaying these on “clean” underwater videos.
Qualitative evaluation is also done on a night-time road sequence with snowfall to demonstrate applicability in other areas of autonomy. We furthermore evaluate the performance and the effect of marine snow detection & suppression by integrating the snow suppression module in a full SLAM pipeline based on the pySLAM system.

Notes

CITATION: When using this dataset in your research, we will be happy if you cite us! --- Lars Martin Hodne, Eirik Leikvoll, Andreas Langeland Teigen, Mauhing Yip, Annette Stahl, and Rudolf Mester, "Detecting and Suppressing Marine Snow for Underwater Visual SLAM," 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2022, pp. 5097-5105, doi: 10.1109/CVPRW56347.2022.00558.

Files

background.zip

Files (14.2 GB)

Name Size Download all
md5:b06e840bde961edccbdbc9b540c0ad70
10.1 GB Preview Download
md5:265efbe90961bdee3a9118586d39311c
6.4 MB Preview Download
md5:4914cd0c5802537b5b81d6d7804dd271
3.1 kB Preview Download
md5:017cb464bd3942fd53f9a61016d4afea
4.1 GB Preview Download
md5:1e10194bcdf2c1e2b35191d01e83d125
18.0 kB Download

Additional details

Related works

Is cited by
10.1109/ICCVW54120.2021.00415 (DOI)
Is derived from
10.5281/zenodo.5567209 (DOI)