There is a newer version of the record available.

Published March 25, 2022 | Version v1
Journal article Open

Data-driven modeling of dissolved iron in the global ocean

  • 1. Duke University
  • 2. University of Liverpool

Description

Global climatological map of dissolved iron in the global ocean from publication: "Data-driven modeling of dissolved iron in the global ocean" by Huang et al. 2022.

File Monthly_dFe.nc (NC_FORMAT_CLASSIC):

     1 variable (excluding dimension variables):

        double dFe_RF [Longitude, Latitude, Depth, Month]   
            units: nmol L-1
            FillValue: NaN
            long_name: Monthly dissolved iron simulated from random forest algorithm
            coordinates: [Longitude, Latitude, Depth, Month]

     4 dimensions:

        Longitude  Size:357
            units: degree_north
            long_name: Longitude

        Latitude  Size:147
            units: degree_east
            long_name: Latitude

        Depth  Size:31
            units: meter
            long_name: Depth

        Month  Size:13
           Units: "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec",  
                      "Annuual mean"            
           long_name: Month

    4 global attributes:
        Author: Yibin Huang & Nicolas Cassar
        Correspond: nicolas.cassar@duke.edu
        Request_for_citation: If you use these data in publications or presentations, please cite:
        “Huang, Y., Tagliabue, A., & Cassar, N. (2022). Data-driven modeling of dissolved iron in
        the global ocean. Frontiers in Marine Science. doi:10.3389/fmars.2022.837183”.
       
   Creation date: March/20th/2022

 

Files

Files (169.2 MB)

Name Size Download all
md5:710627f9d626e80f015710b636d974e3
169.2 MB Download