Data-driven modeling of dissolved iron in the global ocean
- 1. Duke University
- 2. University of Liverpool
Description
Global climatological map of dissolved iron in the global ocean from publication: "Data-driven modeling of dissolved iron in the global ocean" by Huang et al. 2022.
File Monthly_dFe.nc (NC_FORMAT_CLASSIC):
1 variable (excluding dimension variables):
double dFe_RF [Longitude, Latitude, Depth, Month]
units: nmol L-1
FillValue: NaN
long_name: Monthly dissolved iron simulated from random forest algorithm
coordinates: [Longitude, Latitude, Depth, Month]
4 dimensions:
Longitude Size:357
units: degree_north
long_name: Longitude
Latitude Size:147
units: degree_east
long_name: Latitude
Depth Size:31
units: meter
long_name: Depth
Month Size:13
Units: "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec",
"Annuual mean"
long_name: Month
4 global attributes:
Author: Yibin Huang & Nicolas Cassar
Correspond: nicolas.cassar@duke.edu
Request_for_citation: If you use these data in publications or presentations, please cite:
“Huang, Y., Tagliabue, A., & Cassar, N. (2022). Data-driven modeling of dissolved iron in
the global ocean. Frontiers in Marine Science. doi:10.3389/fmars.2022.837183”.
Creation date: March/20th/2022
Files
Files
(169.2 MB)
| Name | Size | Download all |
|---|---|---|
|
md5:710627f9d626e80f015710b636d974e3
|
169.2 MB | Download |