Published January 4, 2021 | Version v1
Journal article Open

Associations Between Habitat Quality And Body Size In The Carpathian-Podolian Land Snail Vestia Turgida: Species Distribution Model Selection And Assessment Of Performance

  • 1. Schmalhausen Institute of Zoology NAS of Ukraine vul. B. Khmelnytskoho, 15, Kyiv, 01030 Ukraine & E-mail: vtytar@gmail.com
  • 2. National Museum of Natural History, NAS of Ukraine vul. B. Khmelnytskogo, 15, Kyiv, 01601 Ukraine & E-mail: anarete@i.ua & expressing the variance explained by the fixed terms in the regression models, was adopted as a measure of functional accuracy, and used to rank the SDMs accordingly. In this respect, the Bayesian additive regression trees (BART) algorithm gave the best result, despite the low AUC and TSS. By restricting our analysis to the BART algorithm only, a variety of sets of environmental variables commonly or less used in the construction of SDMs were explored and tested according to their functional accuracy. In this respect, the SDM produced using the ENVIREM data set gave the best result.

Description

Tytar, V., Baidashnikov, O. (2021): Associations Between Habitat Quality And Body Size In The Carpathian-Podolian Land Snail Vestia Turgida: Species Distribution Model Selection And Assessment Of Performance. Zoodiversity 55 (1): 25-40, DOI: 10.15407/zoo2021.01.025, URL: http://dx.doi.org/10.15407/zoo2021.01.025

Files

source.pdf

Files (687.2 kB)

Name Size Download all
md5:a1cef87dcd2f0e2e7e0a490231cc11cb
687.2 kB Preview Download

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFCEF87DCD2F0E2E7E0A4902FFCCFFCB

References

  • Aguirre-Gutierrez, J., Carvalheiro, L. G., Polce, C. et al. 2013. Fit-for-Purpose: Species Distribution Model Performance Depends on Evaluation Criteria - Dutch Hoverflies as a Case Study. PLoS ONE, 8 (5): e63708.
  • Aho, K., Derryberry, D., Peterson, T. 2014. Model selection for ecologists: the worldviews of AIC and BIC. Ecology, 95 (3), 631-636,
  • Allouche, O., Tsoar, A., Kadmon, R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223-1232.
  • Astor, T. 2014.What do snails do in ecosystems? It is a matter of traits. PhD Thesis. Faculty of Natural Resources and Agricultural Sciences Department of Ecology. Uppsala, 1-67.
  • Baidashnikov, A. A. 1985. Terrestrial mollusks of the Transcarpathian region and their distribution over the main landscapes and plant communities. Proc. Zool. Inst. U.S.S.R, Leningrad, 135, 44-66 [In Russian].
  • Barbet-Massin, M., Jiguet, F., Albert, C.H., Thuiller, W. 2012. Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution, 3 (2), 327-338.
  • Barbet-Massin, M., Thuiller, W., Jiguet, F. 2011. The fate of European breeding birds under climate change, land-use and dispersal scenarios. Glob. Change Biol,.18 (3), 881-890.
  • Barker, G. M., Mayhill, P. C. 1999. Patterns of diversity and habitat relationships in terrestrial mollusc communities of the Pukeamaru Ecological District, northeastern New Zealand. Journal of Biogeography, 26 (2), 215-238.
  • Beale, C. M., Lennon, J. J., Gimona, A. 2008. Opening the climate envelope reveals no macroscale associations with climate in European birds. Proceedings of the National Academy of Sciences USA, 105 (39), 14908-14912.
  • Bemmels, J. B. 2018.Species Range Shifts in Dynamic Geological and Climatic Landscapes: Studies in Temperate and Tropical Trees. PhD Thesis. University of Michigan, 1-250.
  • Besnard, A. G., La Jeunesse, I., Pays, O., Secondi, J. 2013. Topographic wetness index predicts the occurrence of bird species in floodplains. Diversity &Distrib., 19 (8), 955-963.
  • Boehner, J., Koethe, R. Conrad, O. et al. 2002. Soil regionalization by means of terrain analysis and process parameterization. In: Micheli, E., Nachtergaele, F. &Montanarella, L., eds. Soil Classification 2001 European Soil Bureau, Research Report No. 7. Luxembourg, 213-222.
  • Bogaart, P. W., Troch, P. A. 2006. Curvature distribution within hills lopes and catchments and its effect on the hydrological response. Hydrology and Earth System Sciences Discussions, 3, 1071-1104.
  • Booth, T. H., Nix, H.A., Busby, J. R., Hutchinson, M. F. 2014. BIOCLIM: the first species distribution modelling package, its early applications and relevance to most current MAXENT studies.Diversity and Distributions, 20 (1), 1-9.
  • Bradie, J., Leung, B. 2017. A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. J. Biogeogr., 44, 1344-1361.
  • Breiman, L. 2001. Random forests. Machine Learning. 45, 5-32.
  • Brotons, L. 2014. S pecies Distribution Models and Impact Factor Growth in Environmental Journals: Methodological Fashion or the Attraction of Global Change Science. PLoS ONE, 9 (11): e111996.
  • Busby, J. 1991. BIOCLIM - a bioclimate analysis and prediction system. Plant Prot. Q., 6, 8-9.
  • Carlson, C. J. 2020. embarcadero: Species distribution modelling with Bayesian additive regression trees in r. Methods Ecol Evol. Early View, 1- 9.
  • Climate of Ukraine. Lipinsky, V. M., Dyachuk, V. A., Babichenko, V. M., eds. 2003. Rayevskiy Publishing House, Kyiv, 1-343 [In Ukrainian].
  • Conrad, O., Bechtel, B., Bock, M. et al. 2015. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development Discussions, 8 (2), 2271-2312.
  • Cowie, R. H., Nishida, G. M., Basset, Y., Gon, S. M. I. 1995. Patterns of land snail distribution in a montane habitat on the island of Hawaii. Malacologia, 36 (1-2), 155-169.
  • Currie, D. J. 1991. Energy and large-scale patterns of animal- and plant-species richness. American Naturalist, 137, 27-49.
  • Dahl, E. 1998. The Phytogeography of Northern Europe (British Isles, Fennoscandia and adjacent areas). Cambridge University Press, Cambridge, 1-297.
  • Dudov, S. V. 2017. Modeling of species distribution with the use of topography and remote sensing data on the example of vascular plants of the Tukuringra Ridge Low Mountain Belt (Zeya State Nature Reserve, Amur Oblast). Biology Bulletin Reviews, 7 (3), 246-257.
  • Dyduch-Falniowska, A. 1991. The gastropods of the Polish Tatra Mountains. Studia Naturae. Ser. A, 38, 1-11.
  • Elith J., Leathwick, J. R. 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40 (1), 677-697.
  • Elith, J., Leathwick, J. R., Hastie, T. 2008. A working guide to boosted regression trees. Journal of Animal Ecology, 77 (4), 802-813.
  • Fick, S. E., Hijmans R. J. 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37 (12), 4302-4315.
  • Field, R., O'Brien, E. M., Whittaker, R. J. 2005. Global models for predicting woody plant species richness from climate: development and evaluation. Ecology, 86, 2263-2277.
  • Fog, K. 1979. Studies on decomposing wooden stumps III. Different relations among some gastropod species and species groups to the stump microflora, weather changes and pH. Pedobiologia, 19, 200-212.
  • Fourcade, Y., Besnard, A. G., Secondi, J. 2018. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Global Ecol. Biogeogr., 27 (2), 245-256.
  • Franklin, J. 2010. Mapping species distributions: spatial inference and prediction. Cambridge University Press, 1-320.
  • Gallien, L., Douzet, R., Pratte, S. et al. 2012.Invasive species distribution models-how violating the equilibrium assumption can create new insights. Global Ecol. Biogeogr., 21 (11), 1126-1136.
  • Gardner, A. S., Maclean, I. M. D., Gaston, K. J. 2019. Climatic predictors of species distributions neglect biophysiologically meaningful variables. Divers Distrib., 25 (8), 1318-1333.
  • Goodfriend, G. A. 1986. Variation in land-snail shell form and size in its causes: a review. Systematic Zoology, 35, 204-223.
  • Graham, C. H., Hijmans, R. J. 2006. A comparison of methods for mapping species ranges and species richness. Global Ecology and Biogeography, 15, 578-587.
  • Grunewald, T., Stotter, J., Pomeroy, J. W. et al. 2013.Statistical modelling of the snow depth distribution in open alpine terrain. Hydrology and Earth System Sciences, 17, 3005-3021 .
  • Guisan, A., Weiss, S. B., Weiss, A. D. 1999. GLM versus CCA spatial modeling of plant species distribution. Kluwer academic publishers. Plant Ecol., 143, 107-122.
  • Guisan, A., Edwards, T. C., Hastie, T. 2002. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling, 157 (2), 89-100.
  • Guisan, A., Zimmermann, N. E. 2000. Predictive habitat distribution models in ecology. Ecological Modelling, 135 (23), 147-186.
  • Guisan, A., Thuiller, W., Zimmermann, N. E. 2017. Habitat suitability and distribution models: with applications in R. Cambridge University Press, Cambridge, UK, 1-462.
  • Gurgel-Goncalves, R., Galvao, C., Costa, J., Peterson, A. T. 2012. Geographic distribution of chagas disease vectors in Brazil based on ecological niche modeling. Journal of Tropical Medicine: Article ID 705326, 1-15.
  • Hallgren, W., Beaumont, L., Bowness, A. et al. 2016. The Biodiversity and Climate Change Virtual Laboratory: Where ecology meets big data. Environmental Modelling& Software, 76, 182-186.
  • Hengl, T., de Jesus, J. M., MacMillan, R. A. et al. 2014. Soil Grids 1 km - Global Soil Information Based on Automated Mapping. PLoS ONE, 9 (8): e105992.
  • Herenchuk, K. I. 1968. Landscapes. In: Herenchuka, K. I., ed. Nature of the Ukrainian Carpathians. Lviv University Publishing House, Lviv, 208-238 [In Ukrainian].
  • Hijmans, R. J., Cameron, S. E., Parra, J. L. et al. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25 (15), 1965-1978.
  • Holubets, M. A. 1988. Ukrainian Carpathians. Nature. Naukova Dumka, Kyiv, 1-208 [In Ukrainian].
  • Hof, A. R. 2011. European terrestrial gastropod distribution: How may climate change affect their diversity and current distribution. In: Andrea M. Bianchi, Jamie N. Fields, eds. Gastropods: Diversity, Habitat and Genetics. Nova Science Publishers, Inc., 1-19.
  • Hof, A. R., Jansson, R., Nilsson, C. 2012. The usefulness of elevation as a predictor variable in species distribution modeling. Ecological Modelling, 246 (C), 86-90.
  • Homeier, J., Breckle, S.-W., Gunter, S. et al. 2010.Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rain forest. Biotropica, 42, 140-148.
  • Jackson, S. T., Betancourt, J. L., Booth, R. K., Gray, S. T. 2009. Ecology and the ratchet of events: Climate variability, niche dimensions, and species distributions. Proceedings of the National Academy of Sciences of the USA, 106, 9685-9692.
  • Jarvie, S., Svenning, J.-C. 2018. Using species distribution modelling to determine opportunities for trophic rewilding under future scenarios of climate change. Phil. Trans. R. Soc. B37320170446.
  • Jeger, M., Bragard, C., Caffier, D. et al. 2018. Guidance on quantitative pest risk assessment. EFSA Journal, 16 (8):5350, 1-86.
  • Jimenez-Valverde, A., Peterson, A., Soberon, J., Overton, J. et al. 2011. Use of niche models in invasive species risk assessments. Biological Invasions, 13, 2785-2797.
  • Kearney, M. R., Porter, W. 2009. Mechanistic niche modelling: Combining physiological and spatial data to predict species' ranges. Ecology Letters, 12 (4), 334-350.
  • Kerney, M. P., Cameron, R. A. D., Jungbluth, J. H. 1983.Die Landschnecken Nord- und Mitteleuropas. Paul Parey, Hamburg; Berlin.
  • Kremen, C., Cameron, A., Moilanen, A. et al. 2008. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science, 320 (5873), 222-226.
  • Kriticos, D. J., Webber, B. L., Leriche, A. et al. 2012. CliMond: global high resolution historical and future scenario climate surfaces for bioclimatic modeling. Methods in Ecology and Evolution, 3 (1), 53-64.
  • Kuemmerle, T., Chaskovskyy, O., Knorn, J. et al. 2009. Forest cover change and illegal logging in the Ukrainian Carpathians in the transition period from 1988 to 2007. Remote Sensing of Environment, 113, 1194-1207.
  • Kumar, S., Stohlgren, T. J. 2009.Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and the Natural Environment, 1, 94-98.
  • Landis, J. R., Koch, G. G. 1977.The measurement of observer agreement for categorical data. Biometrics, 33, 159-174.
  • Likharev, I. M. 1962. Clausiliidae. Fauna of the U.S.S.R. Mollusks, 3 (4), 1-320 [In Russian].
  • Likharev, I. M., Rammelmeyer, E. S. 1952. Terrestrial molluscs of the U.S.S.R. fauna. Keys to the fauna of the U.S.S.R., 43, 1-512 [In Russian].
  • Liu, C., White, M., Newell, G. 2009. Measuring the accuracy of species distribution models: a review. Proceedings 18th World IMACs/MODSIM Congress. Cairns, Australia, 4241-4247.
  • Ma, B., Sun, J. 2018. Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC Ecology, 18, 10. doi: 10.1186/s12898-018-0165-0.
  • Mammola, S., Milano, F., Vignal, M. et al. 2019. Associations between habitat quality, body size and reproductive fitness in the alpine endemic spider Vesubia jugorum. Global Ecol Biogeogr., 28 (9), 1325-1335.
  • Marquardt, D. W. 1970. Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics, 12 (3), 591-612.
  • Martin, K., Sommer, M. 2004. Relationships between land snail assemblage patterns and soil properties in temperate-humid forest ecosystems. Journal of Biogeography, 31(4), 531-545.
  • Melo-Merino, S. M., Reyes-Bonilla, H., Lira-Noriega, A. 2020. Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecological Modelling, 415 (108837), 1-35.
  • Metz, C. E. 1978. Basic principles of ROC analysis. Semin. Nucl. Med. 8, 283-298.
  • Metzger, M. J., Bunce, R. G. H., Jongman, R. H. G. et al. 2013.High-resolution bioclimate map of the world. Global Ecology and Biogeography, 22 (5), 630-638.
  • Moore, I. D., Gessler, P. E., Nielsen, G. A., Petersen, G. A. 1993. Terrain attributes:estimation methods and scale effects. In: Jakeman,A.J., Beck,M.B., McAleer,M., eds.Modelling Change in Environmental Systems. Wiley,London, 189-214.
  • Nagaraju, S. K., Gudasalamani, R., Barve, N. et al. 2013. Do Ecological Niche Model Predictions Reflect the Adaptive Landscape of Species? A Test Using Myristica malabarica Lam., an Endemic Tree in the Western Ghats, India. PLoS ONE, 8 (11): e82066.
  • Naimi, B., Araujo, M. B. 2016.sdm: a reproducible and extensible R platform for species distribution modelling. Ecography, 39 (4), 368-375.
  • Nakazato, T., Warren, D. L., Moyle, L. C. 2010. Ecological and geographic modes of species divergence in wild tomatoes. American Journal of Botany, 97, 680-693.
  • Nekola, J. C., Smith, T. M. 1999. Terrestrial gastropod richness patterns in Wisconsin carbonate cliff communities. Malacologia, 41 (1), 253-269.
  • Nicolai, A, Ansart, A. 2017. Conservation at a slow pace: terrestrial gastropods facing fast-changing climate. Conserv. Physiol., 5 (1): cox007, 1-17.
  • Nix, H.A. 1986. A biogeographic analysis of Australian elapid snakes. Atlas of elapid snakes of Australia: Australian flora and fauna series, 7, 4-15.
  • Olivero, J., Fa, J. E., Farfan, M. A. et al. 2016. Distribution and Numbers of Pygmies in Central African Forests. PLoS ONE, 11 (1): e0144499.
  • Ondina, P., Hermida, J., Outeiro, A., Mato, S. 2004. Relationships between terrestrial gastropod distribution and soil properties in Galicia (NW Spain). Applied soil ecology, 26 (1) 1-9.
  • Pascoa, P., Gouveia, C. M., Russo, A. C. et al. 2018. Vegetation vulnerability to drought on southeastern Europe. Hydrology and Earth System Sciences Discussions, 1-29.
  • Paul, C. R. C. 1978. Ecology of mollusca in ancient woodland. 2. Analysis of distribution and experiments in Hayley Wood. Cambridgeshire Journal of Conchology, 29 (APR), 281-294.
  • Pettorelli, N., Vik, J. O., Mysterud, A. et al. 2005. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol., 20, 503-510.
  • Prockow, M., Kuznik-Kowalska, E., Mackiewicz, P. 2017. The influence of climate on shell variation in Trochulus striolatus (C. Pfeiffer, 1828) and its implications for subspecies taxonomy. Annales Zoologici, 67, 199-220.
  • Pulliam, H. 2000. On the relationship between niche and distribution. Ecology Letters, 3 (4), 349-361.
  • Qiao, H., Soberon, J., Peterson, A.T. 2015. No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods Ecol Evol., 6 (10), 1126- 1136.
  • Rensch, B. 1932.Ueber die Abhangigkeit des Grosse, relativen Gewichte und der Oberflachenstruktur des Landschneckenschalen von den Umweltsfaktoren. 2. Morph. Oekol. Tiere., 25, 757-807.
  • Rensch, B. 1939. Klimatische Auslese von Grosservarianter. Arch. Naturg. N. F. 8, 89-129.
  • Robinson, L. M., Elith, J., Hobday, A. J., et al. 2011. Pushing the limits in marine species distribution modelling: Lessons from the land present challenges and opportunities. Glob. Ecol. Biogeogr., 20 (6), 789-802.
  • Royle, J. A., Chandler, R. B., Yackulic, C. et al. 2012. Likelihood analysis of species occurrence probability from presence only data for modelling species distributions. Methods in Ecology and Evolution, 3, 545-554.
  • Schatz, A. M., Kramer, A. M., Drake, J. M. 2017. Accuracy of climate-based forecasts of pathogen spread. R. Soc. open sci, 4, 160975.
  • Shabani, F., Kumar, L., Ahmadi, M. 2018. Assessing Accuracy Methods of Species Distribution Models: AUC, Specificity, Sensitivity and the True Skill Statistic. Global Journal of Human-Social Science: B Geography, Geo-Sciences, Environmental Science & Disaster Management, 18 (1), 7-18.
  • Shine, R. 1989. Ecological causes for the evolution of sexual size dimorphism: a review of the evidence. Quarterly Review of Biology, 64, 419-461.
  • Si-Moussi, S., Hedde, M., Thuiller, W. 2019.Plant Recommendation using environment and biotic Associations. 2019 Conference and Labs of the Evaluation Forum, Lugano, Switzerland, September 9-12, 2019, 2380 (72), 1-13.
  • Song, C., Cao, M. 2017. Relationships between Plant Species Richness and Terrain in Middle Sub-Tropical Eastern China. Forests, 8 (9), 344.
  • South, A. 1965. Biology and ecology of Agriolimax reticulatus and other slugs - spatial distribution. Journal of Animal Ecology, 34 (2), 403-417.
  • Sturm, M., McFadden, J. P., Liston, G. E. et al. 2001. Snow-shrub interactions in arctic tundra: a hypothesis with climatic implications. J. Climate, 14, 336-344.
  • Sulikowska-Drozd, A. 2001. Shell variability in Vestia turgida (Rossmassler, 1836) (Gastropoda, Clausiliidae) along an altitudinal gradient. Folia Malacologica, 9, 73-81.
  • Sulikowska-Drozd, A. 2005. Habitat choice in the Carpathian land snails Macrogastra tumida (Rossmassler, 1836) and Vestia turgida (Rossmassler, 1836) (Gastropoda: Clausiliidae). Journal of Molluscan Studies, 71 (2), 105-112.
  • Svenning, J.-C., Harlev, D., SOrensen, M. M., Balslev, H. 2009. Topographic and spatial controls of palm species distributions in a montane rain forest, southern Ecuador. Biodiversity and Conservation, 18, 219-228.
  • Terentiev, P. V. 1970. The effect of climatic temperature on shell size in terrestrial mollusks. Zoologicheskii Zhurnal, 49, 1, 5-10 [In Russian].
  • The jamovi project. 2020. jamovi (Version 1.2) [Computer Software]. Retrieved from https://www.jamovi.org.
  • Thompson, I., Mackey, B., McNulty, S., Mosseler, A. 2009. A Synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. Forest Resilience, Biodiversity, and Climate Change. Secretariat of the Convention on Biological Diversity, Montreal. Technical Series, 43, 1-67.
  • Thuiller, W., Albert, C. H., Dubuis, A. et al. 2010. Variation in habitat suitability does not always relate to variation in species' plant functional traits. Biol Lett., Feb 23, 6 (1), 120-123.
  • Title, P. O., Bemmels, J. B. 2018. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography, 41, 291-307.
  • Urbanski, J. 1939. Mieczaki Pienin ze szczegolnym uwzglednieniem terenu polskiej czesci Parku Narodowego. Prace Komisji Matematyczno-Przyrodniczej PTPN B, 9, 263-505.
  • Vapnik, V. 1998. Statistical Learning Theory. John Wiley and Sons, Inc., New York. 1-768.
  • Vicente, J. R., Goncalves, J., Honrado, J. P. et al. 2014. A framework for assessing the scale of influence of environmental factors on ecological patterns. Ecological Complexity, 20, 151-156.
  • Visconti, P., Bakkenes, M., Baiseroet, D. al. 2016. Projecting global biodiversity indicators under future development scenarios. Conserv. Lett., 9 (1), 5-13.
  • Waltari, E., Guralnick, R. P. 2009. Ecological niche modeling of montane mammals in the Great Basin, North America: examining past and present connectivity of species across basins and ranges. J. Biogeogr., 36 (1), 148-161.
  • Walther, F. 2017.Vestia turgida. The IUCN Red List of Threatened Species 2017: e.T170923A1318754.
  • Wardhaugh, C. W., Edwards, W., Stork, N. E. 2013. Body size variation among invertebrates inhabiting different canopy microhabitat: flower visitors are smaller. Ecological Entomology, 38 (1), 101-111.
  • Warren, D. L., Matzke, N. J., Iglesias, T. L. 2020. Evaluating presence-only species distribution models with discrimination accuracy is uninformative for many applications. J Biogeogr., 47 (1), 167-180.
  • Welter-Schultes, F. W. 2000. The pattern of geographical and altitudinal variation in the land snail Albinaria idaea from Crete (Gastropoda: Clausiliidae). Biological Journal of the Linnean Society, 71 (2), 237-250.
  • Werner, F. A., Homeier, J., Oesker, M., Boy, J. 2012. Epiphytic biomass of a tropical montane forest varies with topography. Journal of Tropical Ecology, 28, 23-31.
  • Wilson, M. F. J., O'Connell, B., Brown, C. et al. 2007. Multiscale Terrain Analysis of Multibeam Bathymetry Data for Habitat Mapping on the Continental Slope. Marine Geodesy, 30, 3-35.
  • Wisz, M. S., Pottier, J., Kissling, W. D. et al. 2013.The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol. Rev. Camb. Philos. Soc., 88, 15-30.
  • Wittmann, M. E., Barnes, M. A., Jerde, C. L. et al. 2016. Confronting species distribution model predictions with species functional traits. Ecol Evol, 6 (4), 873-879.
  • Yanez-Arenas, C., Townsend Peterson, A., Rodriguez-Medina, K. et al. 2016. Mapping current and future potential snakebite risk in the new world. Climatic Change, 134 (4), 697-711.
  • Yi, Y.., Cheng, X., Yang, Z. F., Zhang, S. H. 2016.MaxEnt modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecological Engineering, 92, 260-269.
  • Zajac, K. S.,Prockow, M., Zajac, K. et al. 2020. Phylogeography and potential glacial refugia of terrestrial gastropod Faustina faustina (Rossmassler, 1835) (Gastropoda: Eupulmonata: Helicidae) inferred from molecular data and species distribution models. Organisms Diversity & Evolution, 20 (4), 747-762. https:// doi.org/10.1007/s13127-020-00464-x
  • Zhang, T. 2005. Influence of the seasonal snow cover on the ground thermal regime: An overview. Review of Geophysics, 43, RG4002.
  • Zizhen, L., Hong, L. 1997. The niche-fitness model of crop population and its application. Ecological Modelling, 104 (2-3), 199-203.
  • Zomer, R. J ., Trabucco, A., Metzger, M. J. et al. 2014.Projected climate change impacts on spatial distribution of bioclimatic zones and ecoregions within the Kailash Sacred Landscape of China, India, Nepal. Clim. Chang., 125, 445-460.