Conference paper Open Access

EMBEDDIA at SemEval-2022 Task 8: Investigating Sentence, Image, and Knowledge Graph Representations for Multilingual News Article Similarity

Elaine Zosa; Emanuela Boros; Boshko Koloski; Lidia Pivovarova

In this paper, we present the participation of the EMBEDDIA team to the SemEval 2022 Task 8 (Multilingual News Article Similarity). We cover several techniques and propose different methods for finding the multilingual news article similarity by exploring the dataset in its entirety. We take advantage of the textual content of the articles, the provided metadata (e.g., titles, keywords, topics), the translated articles, the images (those that were available), and knowledge graph-based representations for entities and relations present in the articles. We, then, compute the semantic similarity between the different features and predict through regression the similarity scores. Our findings show that, while our researched methods obtained promising results, exploiting the semantic textual similarity with sentence representations is unbeatable. Finally, in the official SemEval 2022 Task 8, we ranked fifth in the overall team ranking cross-lingual results, and second in the English-only results.

All versions This version
Views 9191
Downloads 5353
Data volume 124.4 MB124.4 MB
Unique views 8686
Unique downloads 5050


Cite as