Published March 8, 2022
| Version v1
Journal article
Open
Fossil coleoid cephalopod from the Mississippian Bear Gulch Lagerstätte sheds light on early vampyropod evolution
Creators
Description
Whalen, Christopher D., Landman, Neil H. (2022): Fossil coleoid cephalopod from the Mississippian Bear Gulch Lagerstätte sheds light on early vampyropod evolution. Nature Communications 13 (1): 364001, DOI: 10.1038/s41467-022-28333-5, URL: http://dx.doi.org/10.1038/s41467-022-28333-5
Files
source.pdf
Files
(9.8 MB)
Name | Size | Download all |
---|---|---|
md5:27062307d067b81d474a5e29e8978389
|
9.8 MB | Preview Download |
Linked records
Additional details
Identifiers
- LSID
- urn:lsid:plazi.org:pub:27062307D067B81D474A5E29FF97FF89
- URL
- http://publication.plazi.org/id/27062307D067B81D474A5E29FF97FF89
References
- 1. Kruta, I. et al. Proteroctopus ribeti in coleoid evolution. Palaeontology 59, 767-773 (2016).
- 2. Sutton, M., Perales-Raya, C. & Gilbert, I. Aphylogeny of fossil and living neocoleoid cephalopods. Cladistics 32, 297-307 (2016).
- 3. Hewitt, R. A. & Jagt, J. W. M. Maastrichtian Ceratisepia and Mesozoic cuttlebone homeomorphs. Acta Palaeontol. Pol. 44, 305-326 (1999).
- 4. Fuchs, D. Homology problems in cephalopod morphology: deceptive (dis) similarities between different types of 'caecum'. Swiss J. Palaeontol. 138, 49-63 (2019).
- 5. Fuchs, D., Keupp, H. & Wiese, F. Protoconch morphology of Conoteuthis (Diplobelida, Coleoidea) and its implications on the presumed origin of the Sepiida. Cretac. Res. 34, 200-207 (2012).
- 6. Clements, T., Colleary, C., De Baets, K. & Vinther, J. Bouyancy mechanisms limit preservation of coleoid cephalopod soft tissues in Mesozoic lagerstatten. Palaeontology 60, 1-14 (2017).
- 7. Fuchs, D. & Part, M. Chapter 23G: systematic descriptions: Octobrachia. Treatise Online 138, 1-52 (2020).
- 8. Gradstein, F. M. & Ogg, J. G. in Geologic Time Scale 2020 (eds. Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.) 21-32 (Elsevier, 2020).
- 9. Tanner, A. R. et al. Molecular clocks indicate turnover and diversification of modern coleoid cephalopods during the Mesozoic Marine Revolution. Proc. R. Soc. B 284, 20162818 (2017).
- 10. Kluessendorf, J. & Doyle, P. Pohlsepia mazonensis, an early 'octopus' from the Carboniferous of Illinois, USA. Palaeontology 43, 919-926 (2000).
- 11. Kroger, B., Vinther, J. & Fuchs, D. Cephalopod origin and evolution: a congruent picture emerging from fossils, development and molecules. Bioessays 33, 602-613 (2011).
- 12. Fuchs, D. Octobrachia - a diphyletic taxon? Berl. Palaobiologische Abhandlungen 10, 181-192 (2009).
- 13. Klug, C. et al. Anatomy and evolution of the first Coleoidea in the Carboniferous. Commun. Biol. 2, 280 (2019).
- 14. Fuchs, D. & Iba, Y. The gladiuses in coleoid cephalopods: homology, parallelism, or convergence? Swiss J. Palaeontol. 134, 187-197 (2015).
- 15. Cuvier, G. Second Memoire sur l' organisation et les rapports des animaux a sang blanc, dans lequel on traite de la structure des Mollusques et de leur division en ordre, lu a la societe d' Histoire Naturelle de Paris, le 11 prairial an troisieme. ou J. des. Sci. des. Lett. des. Arts 2, 433-449 (1795).
- 16. Bather, F. A. Shell-growth in Cephalopoda (Siphonopoda). J. Nat. Hist. 1, 298-309 (1888).
- 17. von Boletzky, S. Evolutionary aspects of development, life style, and reproductive mode in incirrate octopods (Mollusca, Cephalopoda). Rev. suisse Zool. 99, 755-770 (1992).
- 18. Grogan, E. D. & Lund, R. The geological and biological environment of the Bear Gulch Limestone (Mississippian of Montana, USA) and a model for its deposition. Geodiversitas 24, 295-315 (2002).
- 19. Williams, L. A. Deposition of the Bear Gulch Limestone: a Carboniferous plattenkalk from central Montana. Sedimentology 30, 843-860 (1983).
- 20. Lund, R. & Janvier, P. A second lamprey from the Lower Carboniferous (Namurian) of Bear Gulch, Montana (U.S.A.). Geobios 19, 647-652 (1986).
- 21. Mickle, K. E., Lund, R. & Grogan, E. D. Three new palaeoniscoid fishes from the Bear Gulch Limestone (Serpukhovian, Mississippian) of Montana (USA) and the relationships of lower actinopterygians. Geodiversitas 31, 623-668 (2009).
- 22. Lund, R., Greenfest-Allen, E. & Grogan, E. D. Habitat and diversity of the Bear Gulch fish: life in a 318 million year old marine Mississippian bay. Palaeogeogr. Palaeoclimatol. Palaeoecol. 342-343, 1-16 (2012).
- 23. Grogan, E. D., Lund, R. & Fath, M. Anew petalodont chondrichthyan from the Bear Gulch Limestone of Montana, USA, with reassessment of Netsepoye hawesi and comments on the morphology of holomorphic petalodonts. Paleontol. J. 48, 1003-1014 (2014).
- 24. Lund, R. New petalodonts (Chondrichthyes) from the Upper Mississippian Bear Gulch Limestone (Namurian E2b) of Montana. J. Vertebr. Paleontol. 9, 350-368 (1989).
- 25. Lund, R. The morphology of Falcatus falcatus (St. John and Worthen), a Mississippian stethacanthid chondrichthyan from the Bear Gulch Limestone of Montana. J. Vertebr. Paleontol. 5, 1-19 (1985).
- 26. Lund, R. & Lund, W. New genera and species of coelacanths from the Bear Gulch Limestone (Lower Carboniferous) of Montana (U.S.A.). Geobios 17, 237-244 (1984).
- 27. Schram, F. R. & Horner, J. Crustacea of the Mississippian Bear Gulch Limestone of central Montana. J. Paleontol. 52, 394-406 (1978).
- 28. Landman, N. H. & Davis, R. A. Jaw and crop preserved in an orthoconic nautiloid cephalopod from the Bear Gulch Limestone (Mississippian, Montana). N. Mex. Bur. Mines Miner. Resour. 44, 103-107 (1988).
- 29. Mapes, R. H., Weller, E. A. & Doguzhaeva, L. A. in Cephalopods - Present and Past (Tanabe, K., Shigeta, Y., Sasaki, T. & Hirano, H. eds.) 155-170 (Tokai University Press, 2010).
- 30. Landman, N. H., Mapes, R. H. & Cruz, C. in Cephalopods-Present and Past (eds. Tanabe, K., Shigeta, Y., Sasaki, T. & Hirano, H.) 147-153 (Tokai University Press, 2010).
- 31. Grogan, E. D. & Lund, R. Debeerius ellefseni (fam. nov., gen. nov., spec. nov.), an autodiastylic chondrichthyan from the Mississippian Bear Gulch limestone of Montana (USA), the relationships of the chondrichthyes, and comments on gnathostome evolution. J. Morphol. 243, 219-245 (2000).
- 32. Pointon, M. A., Chew, D. M., Ovtcharova, M., Sevastopulo, G. D. & Crowley, Q. G. New high-precision U-Pb dates from western European carboniferous tuffs; implications for time scale calibration, the periodicity of late carboniferous cycles and stratigraphical correlation. J. Geol. Soc. Lond. 169, 713-721 (2012).
- 33. Klug, C., Kroger, B., Vinther, J., Fuchs, D. & De Baets, K. in Ammonoid paleobiology: from macroevolution to paleogeography 3-24 (Springer, 2015).
- 34. Sasaki, T., Shigeno, S. & Tanabe, K. in Cephalopods-Present and Past (Tanabe, K., Shigeta, Y., Sasaki, T. & Hirano, H. eds) 35-66 (Tokai University Press, 2010).
- 35. Shigeno, S. et al. in Cephalopods-Present Past, 23-34 (Tokai University Press, 2010).
- 36. Fuchs, D., Keupp, H. & Schweigert, G. First record of a complete arm crown of the Early Jurassic coleoid Loligosepia (Cephalopoda). Palaontologische Z. 87, 431-435 (2013).
- 37. Jereb, P., Roper, C. F. E., Norman, M. D. & Finn, J. K. Cephalopods of the World, An Annotated and Illustrated Catalogue of Cephalopod Species Known to Date, Volume 3, Octopods and Vampire Squid. (Food and Agriculture Organization of the United Nations, 2014).
- 38. Fuchs, D. & Weis, R. Taxonomy, morphology and phylogeny of Lower Jurassic teudopseid coleoids (Cephalopoda). Neues Jahrb. f.ur. Geol. und Palaontologie - Abhandlungen 257, 351-366 (2010).
- 39. Doguzhaeva, L. A. et al. An Early Triassic gladius associated with soft tissue remains from Idaho, USA - a squid-like coleoid cephalopod at the onset of Mesozoic Era. Acta Palaeontol. Pol. 63, 341-355 (2018).
- 40. Fuchs, D. et al. The Muensterelloidea: phylogeny and character evolution of Mesozoic stem octopods. Pap. Palaeontol. 6, 31-92 (2020).
- 41. Ko st ak, M., Jagt, J. W. M., Speijer, R. P., Stassen, P. & Steurbaut, E. New Paleocene sepiid coleoids (Cephalopoda) from Egypt: evolutionary significance and origin of the sepiid 'rostrum'. PLoS ONE 8, e81180 (2013).
- 42. Fuchs, D. & Donovan, D. Part M, Chapter 23C: systematic descriptions: Phragmoteuthida. Treatise Online 111, 1-7 (2018).
- 43. Warnke, K. M., Meyer, A., Ebner, B. & Lieb, B. Assessing divergence time of Spirulida and Sepiida (Cephalopoda) based on hemocyanin sequences. Mol. Phylogenet. Evol. 58, 390-394 (2011).
- 44. Jeletzky, J. A. Comparative morphology, phylogeny, and classification of fossil Coleoidea. Univ. Kans. Paleontol. Contrib. 21, 1-162 (1966).
- 45. Naef, A. Die fossilen tintenfische: eine palaozoologische monographie. 1-322 (Jena Gustav Fischer,1922).
- 46. Doyle, P., Donovan, D. & Nixon, M. Phylogeny and systematics of the Coleoidea. (Univ. Kansas Paleontol. Contrib., 1994).
- 47. Lindgren, A. R., Giribet, G. & Nishiguchi, M. K. Acombined approach to the phylogeny of Cephalopoda (Mollusca). Cladistics 20, 454-486 (2004).
- 48. Sanchez, G. et al. Genus-level phylogeny of cephalopods using molecular markers: current status and problematic areas. PeerJ 6, e4331 (2018).
- 49. Uribe, J. E. & Zardoya, R. Revisiting the phylogeny of Cephalopoda using complete mitochondrial genomes. J. Mollusca. Stud. 83, 133-144 (2017).
- 50. Lindgren, A. R., Pankey, M. S., Hochberg, F. G. & Oakley, T. H. A multi-gene phylogeny of Cephalopoda supports convergent morphological evolution in association with multiple habitat shifts in the marine environment. BMC Evol. Biol. 12, 129 (2012).
- 51. Strugnell, J., Norman, M., Jackson, J., Drummond, A. J. & Cooper, A. Molecular phylogeny of coleoid cephalopods (Mollusca: Cephalopoda) using a multigene approach; the effect of data partitioning on resolving phylogenies in a Bayesian framework. Mol. Phylogenet. Evol. 37, 426-441 (2005).
- 52. Lakin, J. A., Marshall, J. E. A., Troth, I. & Harding, I. C. Greenhouse to icehouse: a biostratigraphic review of latest Devonian-Mississippian glaciations and their global effects. Geol. Soc. Spec. Publ. 423, 439-464 (2016).
- 53. Bambach, R. K. Phanerozoic biodiversity mass extinctions. Annu. Rev. Earth Planet. Sci. 34, 127-155 (2006).
- 54. Royer, D. L., Berner, R. A., Montanez, I. P., Tabor, N. J. & Beerling, D. J. CO2 as a primary driver of Phanerozoic climate. GSA Today 14, 4-10 (2004).
- 55. Stein, W. E. et al. Mid-Devonian Archaeopteris roots signal revolutionary change in earliest fossil forests. Curr. Biol. 30, 421-431 (2020).
- 56. Kiessling, W. Geologic and biologic controls on the evolution of reefs. Annu. Rev. Ecol. Evol. Syst. 40, 173-192 (2009).
- 57. Whalen, C. D. & Briggs, D. E. G. The Palaeozoic colonization of the water column and the rise of global nekton. Proc. R. Soc. B 285, 20180883 (2018).
- 58. Brett, C. E. & Walker, S. E. Predators and predation in Paleozoic marine environments. Paleontol. Soc. Pap. 8, 93-118 (2002).
- 59. Klug, C., Frey, L., Pohle, A., De Bates, K. & Korn, D. Palaeozoic evolution of animal mouthparts. Bull. Geosci. 92, 511-524 (2017).
- 60. Friedman, M. & Sallan, L. C. Five hundred million years of extinction and recovery: a phanerozoic survey of large-scale diversity patterns in fishes. Palaeontology 55, 707-742 (2012).
- 61. Korn, D. & Klug, C. in Earth and Life: Global Biodiversity, Extinction Intervals and Biogeographic Perturbations Through Time (ed. Talent, J. A.) 491-534 (Springer Science+Business Media, 2012).
- 62. Whalen, C. D., Hull, P. M. & Briggs, D. E. G. Paleozoic ammonoid ecomorphometrics test ecospace availability as a driver of morphological diversification. Sci. Adv. 6, eabc2365 (2020).
- 63. Alroy, J. et al. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97 (2008).
- 64. Fan, J. et al. Ahigh-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science 367, 272-277 (2020).
- 65. Sallan, L. C. & Coates, M. I. End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates. Proc. Natl Acad. Sci. USA 107, 10131-10135 (2010).
- 66. McCoy, V. E. et al. Chemical signatures of soft tissues distinguish between vertebrates and invertebrates from the Carboniferous Mazon Creek Lagerstatte of Illinois. Geobiology 18, 560-565 (2020).
- 67. Lindsay, D. J., Hunt, J. C., McNeil, M., Beaman, R. J. & Vecchione, M. The first in situ observation of the ram' s horn squid Spirula spirula turns 'common knowledge' upside down. Diversity 12, 449 (2020).
- 68. Fuchs, D. & Lukeneder, A. Cenozoic coleoids (Cephalopoda) from Austria-a review of Schultz' s Catalogus Fossilium Austriae. Denisia 157, 23-32 (2014).
- 69. Yancey, T. E. & Garvie, C. L. Redescription of Anomalosaepia (Cephalopoda: Coleoida): a sepioid with a bimineralic calcite and aragonite skeleton. J. Paleontol. 85, 904-915 (2011).
- 70. Doguzhaeva, L. A. & Summesberger, H. Pro-ostraca of Triassic belemnoids (Cephalopoda) from Northern Calcareous Alps, with observations on their mode of preservation in an environment of northern Tethys which allowed for carbonization of non-biomineralized structures. Neues Jahrb. fur Geol. und Palaontologie - Abhandlungen 266, 31-38 (2012).
- 71. Arkhipkin, A. I., Bizikov, V. A. & Fuchs, D. Vestigial phragmocone in the gladius points to a deepwater origin of squid (Mollusca: Cephalopoda). Deep. Res. I 61, 109-122 (2012).
- 72. Klug, C., Schweigert, G., Fuchs, D., Kruta, I. & Tischlinger, H. Adaptations to squid-style high-speed swimming in Jurassic belemnitids. Biol. Lett. 12, 20150877 (2016).
- 73. Johnson, R. G. & Richardson, E. S. Ten-armed fossil cephalopod from the Pennsylvanian of Illinois. Science 159, 526-528 (1968).
- 74. Iba, Y., Sano, S., Mutterlose, J. & Kondo, Y. Belemnites originated in the Triassic-a new look at an old group. Geology 40, 911-914 (2012).
- 75. Doguzhaeva, L. A. A rare coleoid mollusc from the Upper Jurassic of Central Russia. Acta Palaeontol. Pol. 45, 389-406 (2000).
- 76. Dzik, J. & Korn, D. Devonian ancestors of Nautilus. Palaontologische Z. 66, 81-98 (1992).
- 77. Turek, V. in Cephalopods - Present and Past, 85-92 (Tokai University Press, 2010).
- 78. King, A. H. & Evans, D. H. High-level classification of the nautiloid cephalopods: a proposal for the revision of the Treatise Part K. Swiss J. Palaeontol. 138, 65-85 (2019).
- 79. Wade, M. Nautiloids and their descendants: cephalopod classification in 1986. N. Mex. Bur. Mines Miner. Resour. Mem. 44, 15-25 (1988).
- 80. Holland, C. H. The nautiloid cephalopods: a strange success. J. Geol. Soc. Lond. 144, 1-15 (1987).
- 81. Teichert, C. et al. Treatise on Invertebrate Paleontology, Part K, Mollusca 3: Cephalopoda-General Features, Endoceratoidea - Actinoceratoidea - Nautiloidea, Bactritoidea (Geological Society of America and University of Kansas Press, 1964).
- 82. Flower, R. H. Nautiloids of the Paleozoic. Geol. Soc. Am. Mem. 67, 829-852 (1957).
- 83. Aubrechtova, M. Arevision of the Ordovician cephalopod Bactrites sandbergeri Barrande: systematic position and palaeobiogeography of Bactroceras. Geobios 48, 193-211 (2015).
- 84. Hildenbrand, A., Austermann, G., Fuchs, D., Bengtson, P. & Stinnesbeck, W. Apotential cephalopod from the early Cambrian of eastern Newfoundland, Canada. Commun. Biol. 4, 388 (2021).
- 85. Fuchs, D. The 'rostrum' - problem in coleoid terminology-an attempt to clarify inconsistencies. Geobios 45, 29-39 (2012).
- 86. Doyle, P. & Shakides, E. V. The Jurassic belemnite suborder Belemnotheutina. Palaeontology 47, 983-998 (2004).