Published March 8, 2022 | Version v1
Report Open

Virunga Volcanoes Supersite Biennial Report: 2020- 2021

  • 1. Geochemistry and Environmental Department, Goma Volcano Observatory. 142, Avenue du Rond-Point, Quartier des Volcans, Goma City, Democratic Republic of the Congo balagizi.charles@gmail.com
  • 2. Department of Seismology, Goma Volcano Observatory 142, Avenue du Rond-Point, Quartier des Volcans, Goma City, Democratic Republic of the Congo
  • 3. Department of Technics, Goma Volcano Observatory 142, Avenue du Rond-Point, Quartier des Volcans, Goma City, Democratic Republic of the Congo
  • 4. Geochemistry and Environmental Department, Goma Volcano Observatory. 142, Avenue du Rond-Point, Quartier des Volcans, Goma City, Democratic Republic of the Congo
  • 5. Rwanda Mines, Petroleum and Gas Board(RMB), Seismology Section Kigali, Rwanda
  • 6. Chalmers University of Technologie
  • 7. U.S. Geological Survey, Cascades Volcano Observatory 1300 SE Cardinal Court, Suite 100 Vancouver, WA 98683
  • 8. Istituto Nazionale di Geofisica e Vulcanologia Via Ugo La Malfa, 153 90146 - Palermo (Italy)
  • 9. Earthquake Research Institute, University of Tokyo 1-1 Yayoi 1, Bunkyo-ku- Tokyo 113-0032, Japan
  • 10. KAUST – King Abdullah University of Science and Technology Earth Science and Engineering - Crustal Deformation and InSAR group
  • 11. Istituto Nazionale di Geofisica e Vulcanologia Piazza Roma, 2 - 95125 Catania; Italy
  • 12. Department of Geology - University at Buffalo 126 Cooke Hall, Buffalo, NY 14260
  • 13. Istituto Nazionale di Geofisica e Vulcanologia, Vesuviano Observatoy, Italia
  • 14. Istituto Nazionale di Geofisica e Vulcanologia Piazza Roma, 2 - 95125 Catania-Italia
  • 15. Istituto Nazionale di Geofisica e Vulcanologia Piazza Roma, 2 - 95125 Catania
  • 16. Universidad Nacional Autónoma de México Instituto de Geofísica; Mexico City, Mexico
  • 17. Dipartimento di Scienze della Terra, Università degli Studi di Torino TORINO, Italia
  • 18. Volcano Disaster Assistance Program, USGS Cascades Volcano Observatory 1300 SE Cardinal Court; Vancouver, WA 98683-USA
  • 19. Istituto Nazionale di Geofisica e Vulcanologia Osservatorio Nazionale Terremoti Via di Vigna Murata 605, 00143 Rome, Italy

Description

The Virunga was established in November 2017 as a permanent Supersite with the aim of improving the geophysical scientific research and Geohazards assessment in support of Disaster Risk Reduction (DDR) in the Virunga Volcanic Province and the Lake Kivu basin. The CEOS guarantees a free access to Earth Observatory (EO) data, while the pool of collaboration built around the Supersite potentially supports the access to equipment for ground-based data collection and processing. From November 2017 to November 2019, in addition to implementing the Supersite; collaboration was built between the GVO and the world leading observatories and agencies, the free access to EO data with first steps towards collecting some ground-based data, training of some local scientists, and the adhesion to the Virunga Supersite of world top-level geoscientists in the field of active volcano monitoring and hazards assessment. The later allowed the assessment of volcanic hazards around Nyiragongo and Nyamulagira, which included the production of hazards maps for future volcanic eruptions management, the collection of ground-based data to produce Risk and Recovery mapping.
On the evening of May 22nd 2021, Nyiragongo volcano suddenly erupted from three vents that opened along a system of fractures on the southern flanks of the volcano. Two major lava flows were produced with one having its direction toward Goma city. Fortunately, these lava flows stopped their run before reaching the densely populated areas, with one being only at ~1 km from the Goma international Airport. Still, the lava flows had already destroyed about 3,600 houses while another 1,000 were severely damaged causing at least 30,000 persons to be in the need of shelter and other humanitarian assistance. The volcanic eruption further caused the death of 38 persons, disrupted the water supply infrastructures in Goma and the surrounding: estimated 550,000 persons lost access to water. An intense seismic activity followed the eruption and persisted for ~2 weeks, and caused sever damages to houses and infrastructures such as roads, water and electricity networks. Furthermore, the earthquakes caused important ground deformation in Goma and Gisenyi cities, which brought the fear of magma rising and accumulating beneath Goma and Lake Kivu. This raised a scenario of a new eruption with active vents inside Goma city or Lake Kivu, and led local authorities to evacuate estimated 400,000 people. Virunga Supersite scientific team supported the response to the Nyiragongo 2021 volcanic crisis through data processing, which yielded the production of key information that was delivered to local authorities and supported the management of the volcanic and humanitarian crises.
In September 2021 a new effusive activity began inside Nyiragongo main crater, along with a sustained seismic activity and ground deformation to the southern flank of the volcano. The fast renew of the activity denotes the strong and urgent need to starting prepare for the next Nyiragongo volcanic eruption; and the Virunga Supersite is willing to be part of this goal. This preparation strongly need an enhanced monitoring infrastructure that would permit follow up the complex Nyiragongo-Nyamulagira rift-zone volcanism, forecast the spatiotemporal extent of the next eruption which will reduce its impacts. Furthermore, a proper training of local scientists is part of the well properness to the next Nyiragongo crisis, which the Supersite has already started.

Files

Virunga Volcanoes Supersite 2020- 2021 Biennial Report_2020-2021.pdf

Files (12.6 MB)

Additional details

References

  • Balagizi C.M., G. Mavonga, M. Kasereka, M. Liotta, M. Manzo, R. Lanari, M. Bonano, C. De Luca, G. Onorato, J. Lukindula, G. Ganci, C. Del Negro, A. Cappello, M. Coltelli, M. Mattia, D. Coppola, R. J. Durrheim, P. Mukambilwa, A. Kyambikwa, N. Mashagiro, H. Ciraba, J. B. Lowenstern, P. J Kelly, W. McCausland, A. Kies; 2020. Virunga Volcanoes Supersite Biennial Report: 2017- 2019; DOI: 10.5281/zenodo.3910912; https://zenodo.org/record/3911065#.XxHxQ54zY2w
  • Balagizi M.C. and M. Liotta, 2019. Key factors of precipitation stable isotope fractionation in Central-Eastern Africa and Central Mediterranean. Geosciences 2019, 9, 337 https://www.mdpi.com/2076-3263/9/8/337
  • Balagizi MC, Kasereka M M, Cuoco E, Liotta M (2018a) Influence of moisture source dynamics and weather patterns on stable isotopes ratios of precipitation in Central-Eastern Africa. Science of the Total Environment 628–629, 1058–1078. https://doi.org/10.1016/j.scitotenv.2018.01.284
  • Balagizi, M.C, A. Kies, M. M. Kasereka, D. Tedesco, M. M. Yalire, W. A. McCausland. (2018b). Natural hazards in Goma and the surrounding villages, East African Rift System. Springer's Journal of Natural Hazards, 93, 31–66, https://doi.org/10.1007/s11069-018-3288-x
  • Balagizi, MC., Yalire, M., Ciraba, H., Kajeje, V., Minani, A., Kinja, A., Kasereka, M., (2016). Soil temperature and CO2 degassing, SO2 fluxes and field observations before and after the February 29, 2016 new vent inside Nyiragongo crater. Bulletin of Volcanology, 78 (9):1-11, https://link.springer.com/article/10.1007/s00445-016-1055-y
  • Balagizi MC, Darchambeau F, Yalire M, Bouillon S, Borges VA (2015) River geochemistry, chemical weathering, and atmospheric CO2 consumption rates in the Virunga Volcanic Province (East Africa), Geochemistry Geophysics Geosystems, 16, 2637- 2660. doi:10.1002/2015GC005999
  • Degens ET, Von Herzen RP, Wong HK, Deuser WG, Jannasch HW (1973) Lake Kivu: structure, chemistry and biology of an East African rift lake. Geol. Rundsch., 62 (1), 245-277.
  • Ebinger CJ (1989) Tectonic development of the western branch of the East African Rift System. Geol. Soc. Am. Bull., 101, 885–903.
  • Kling GW, Evans WC, Tanyileke G, Kusakabe M, Ohba T, Yoshida Y, Hell JV (2005) Degassing Lakes Nyos and Monoun-defusing certain disaster. Proc. National Academy of Sciences 102: 14185-14190. doi: 10.1073/pnas.0502274102
  • Pasche N, Schmid M, Vazquez F, Schubert C, Wüest A, Kessler J, Pack M, Reeburgh WS, Buergmann H (2011) Methane sources and sinks in Lake Kivu, J. Geophys., 6,1-16. doi:10.1029/2011JG001690
  • Schmid M, Tietze K, Halbwachs M, Lorke A, McGinnis D, Wüest A (2004) How hazardous is the gas accumulation in Lake Kivu? Arguments for a risk assessment in light of the Nyiragongo Volcano eruption of 2002. Acta Vulcanologica., 15 (1-2), 115-122.
  • Schoell M, Tietze K, Schoberth SM (1988) Origin of methane in Lake Kivu (East-Central Africa). Chem. Geol., 71, 257–265. doi:10.1016/0009-2541(88)90119-2
  • Tassi F, Vaselli O, Tedesco D, Montegrossi G, Darrah T, Cuoco E, Mapendano MY, Poreda R, Huertas DA (2009) Water and gas chemistry at Lake Kivu (DRC): Geochemical evidence of vertical and horizontal heterogeneities in a multibasin structure. Geochem. Geophys. Geosyst., 10 (2),1-22. doi:10.1029/2008GC002191
  • Zhang Y, Kling GW (2006) Dynamics of Lake Eruptions and Possible Ocean Eruptions. Ann. Rev. Earth Planet. Sc., 34, 293-324. doi:10.1146/ annurev.earth.34.031405.125001
  • Arellano, S.R., Yalire, M., Galle, B., Bobrowski, N., Dingwell, A., Johansson, M., Norman, P., 2016. Long-term Monitoring of SO2 Quiescent Degassing from Nyiragongo's Lava Lake. http://dx.doi.org/10.1016/j.jafrearsci.2016.07.002
  • Calabrese, S., Aiuppa, A., Allard, P., Bagnato, E., Bellomo, S., Brusca, L., D'Alessandro, W., Parello, F., 2011. Atmospheric sources and sinks of volcanogenic elements in a basaltic volcano (Etna, Italy). Geochim. Cosmochim. Acta 75 (23), 7401e7425. http://dx.doi.org/10.1016/j.gca.2011.09.040, 7401-7425
  • Cuoco, E., Tedesco, D., Poreda, R. J., Williams, J. C., De Francesco S., Balagizi, C., Darrah, T. H. 2012a. Impact of volcanic plume emissions on rain water chemistry during the January 2010 Nyamuragira eruptive event: Implications for essential potable water resources. J. Hazard. Mater. 244, 570–581.
  • Cuoco, E., Spagnuolo, A., Balagizi, C., De Francesco, S., Tassi F., Vaselli, O. Tedesco, D., 2012b. Impact of volcanic emissions on rainwater chemistry: The case of Mt. Nyiragongo in the Virunga volcanic region (DRC). J. Geochem. Explor. 125, 69–79
  • Madonia, P., Liotta, M., 2010. Chemical composition of precipitation at Mt. Vesuvius and Vulcano Island, Italy: volcanological and environmental implications. Environmental Earth Sciences 61, 159–171.
  • Liotta, M., Brusca, L., Grassa, F., Inguaggiato, S., Longo, M., Madonna, P., 2006. Geochemistry of rainfall at Stromboli volcano (Aeolian Islands): isotopic composition and plume–rain interaction. Geochemistry, Geophysics, Geosystems 7 (N°7) (12 pp.).
  • Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038
  • Hanssen, R. (2001). Radar interferometry: Data interpretation and error analysis (Vol. 2). Springer, Dordrecht. doi: 10.1007/0-306-47633-9.
  • Nobile, A., Pagli, C., Keir, D., Wright, T. J., Ayele, A., Ruch, J., and Acocella, V. (2012), Dike-fault interaction during the 2004 Dallol intrusion at the northern edge of the Erta Ale Ridge (Afar, Ethiopia), Geophys. Res. Lett., 39, L19305, doi:10.1029/2012GL053152
  • Wegmüller, U. (1998). SAR Processing, Interferometry, Differential Interferometry and Geocoding Software. presented at EUSAR'98, 25-27 May. Friedrichshafen, Germany, VDE-Verlag.
  • Werner, C., Wegmüller, U., & Strozzi, T. (2002). Processing strategies for phase unwrapping for INSAR applications. presented at Procs. EUSAR Conf. Cologne, Germany
  • Barrière, J., d'Oreye, N., Oth, A., Geirsson, H., Mashagiro, N., Johnson, J.B., Smets, B., Samsonov, S., Kervyn, F., 2018. Single-station seismo-acoustic monitoring of Nyiragongo's lava lake activity (D.R. Congo). Front. Earth Sci. 6, 82
  • Biggs, J.; Pritchard, M.E. Global volcano monitoring: What does it mean when volcanoes deform? Elements 2017, 13, 17–22.
  • Burgi P.-Y., Valade, S., Coppola D., Boudoire G., Mavonga G., Rufino F., and Tedesco D., Unconventional filling dynamics of a pit crater, EPSL, 2021
  • Massimetti, F., Coppola, D., Laiolo, M., Valade, S., Cigolini, C., Ripepe M., Volcanic Hot-Spot Detection Using SENTINEL-2: A Comparison with MODIS–MIROVA Thermal Data Series, Remote Sens., 2020, 12(5), 820
  • Moore, C., Wright, T., Hooper, A., Biggs, J., 2019. The 2017 eruption of Erta 'Ale volcano, Ethiopia: insights into the shallow axial plumbing system of an incipient mid-ocean ridge. Geochem. Geophys. Geosyst. 20, 5727–5743
  • Theys, N.; Hedelt, P.; De Smedt, I.; Lerot, C.; Yu, H.; Vlietinck, J.; Pedergnana, M.; Arellano, S.; Galle, B.; Fernandez, D.; et al. Global monitoring of volcanic SO2 degassing with unprecedented resolution from TROPOMI onboard Sentinel-5 Precursor. Sci. Rep. 2019, 9, 1–10
  • Valade, S., Ley, A., Massimetti, F., D'Hondt, O., Laiolo, M., Coppola, D., Loibl, D., Hellwich, O., Walter, T.R., Towards Global Volcano Monitoring Using Multisensor Sentinel Missions and Artificial Intelligence: The MOUNTS Monitoring System, Remote Sens., 2019, 11, 1528
  • Wadge, G., Cole, P., Stinton, A., Komorowski, J.-C., Stewart, R., Toombs, A.C., Legendre, Y., 2011. Rapid topographic change measured by high-resolution satellite radar at Soufriere Hills volcano, Montserrat, 2008–2010. J. Volcanol. Geotherm. Res. 199, 142–152