Published August 18, 2021 | Version v1
Journal article Restricted

Sphingobacterium prati sp. nov., isolated from agricultural soil and involved in lignocellulose deconstruction

Description

Besaury, Ludovic, Floret, Juliette, Rémond, Caroline (2021): Sphingobacterium prati sp. nov., isolated from agricultural soil and involved in lignocellulose deconstruction. International Journal of Systematic and Evolutionary Microbiology (004963) 71 (8): 1-8, DOI: 10.1099/ijsem.0.004963, URL: http://dx.doi.org/10.1099/ijsem.0.004963

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:D248FFC4FFE4FFF1FFC2FF9EB133FFFF
URL
http://publication.plazi.org/id/D248FFC4FFE4FFF1FFC2FF9EB133FFFF

References

  • 1. Kim MK,Na J-R, Cho DH, Soung N-K, Yang D-C. Parapedobacter koreensis gen. nov., sp. nov. Int J Syst Evol Microbiol 2007;57:1336-1341.
  • 2. Steyn P, Segers P, Vancanneyt M, Sandra P, Kersters K, et al. Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Evol Microbiol 1998;48:165-177.
  • 3. Xia X, Wu S, Han Y, Liao S, Wang G. Pelobium manganitolerans gen. nov., sp. nov., isolated from sludge of a manganese mine. Int J Syst Evol Microbiol 2016;66:4954-4959.
  • 4. Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucosenonfermenting gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Evol Microbiol 1983;33:580-598.
  • 5. Jagannadham MV,Chattopadhyay MK,Subbalakshmi C,Vairamani M, Narayanan K,et al. Carotenoids of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum. Arch Microbiol 2000;173:418-424.
  • 6. Kim K-H, Ten LN, Liu Q-M, Im W-T, Lee S-T. Sphingobacterium daejeonense sp. nov., isolated from a compost sample. Int J Syst Evol Microbiol 2006;56:2031-2036.
  • 7. Mehnaz S, Weselowski B, Lazarovits G. Sphingobacterium canadense sp. nov., an isolate from corn roots. Syst Appl Microbiol 2007;30:519-524.
  • 8. Lambiase A, Rossano F, Del Pezzo M, Raia V, Sepe A, et al. Sphingobacterium respiratory tract infection in patients with cystic fibrosis. BMC Res Notes 2009;2:262.
  • 9. He W, Guo J, Guo H, An M, Huang W, et al. Sphingobacterium puteale sp. nov., isolated from a deep subsurface aquifer. Int J Syst Evol Microbiol 2019;69:3356-3361.
  • 10. Vieira F, Nahas E. Comparison of microbial numbers in soils by using various culture media and temperatures. Microbiol Res 2005;160:197-202.
  • 11. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613-1617.
  • 12. Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using CLUSTALW and CLUSTALX. Curr Protoc Bioinformatics 2002;Chapter 2:Unit 2.3.
  • 13. Lai W-A, Hameed A, Liu Y-C, Hsu Y-H, Lin S-Y, et al. Sphingobacterium cibi sp. nov., isolated from the food-waste compost and emended descriptions of Sphingobacterium spiritivorum (Holmes et al. 1982) Yabuuchi et al. 1983 and Sphingobacteriumthermophilum Yabe et al. 2013. Int J Syst Evol Microbiol 2016;66:5336-5344.
  • 14. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870-1874.
  • 15. Cheng JF, Guo JX, Bian YN, Chen ZL, Li CL, et al. Sphingobacterium athyrii sp. nov., a cellulose- and xylan-degrading bacterium isolated from a decaying fern (Athyrium wallichianum Ching). Int J Syst Evol Microbiol 2019;69:752-760.
  • 16. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018;35:1547-1549.
  • 17. Marques AM, Burgos-Diaz C, Aranda FJ, Teruel JA, Manresa A, et al. Sphingobacterium detergens sp. nov.,a surfactant-producing bacterium isolated from soil.Int J Syst Evol Microbiol 2012;62:3036-3041.
  • 18. Liu R, Liu H, Zhang C-X, Yang S-Y, Liu X-H, et al. Sphingobacterium siyangense sp. nov., isolated from farm soil. Int J Syst Evol Microbiol 2008;58:1458-1462.
  • 19. Ahmed I, Ehsan M, Sin Y, Paek J, Khalid N, et al. Sphingobacterium pakistanensis sp. nov., a novel plant growth promoting rhizobacteria isolated from rhizosphere of Vigna mungo. Antonie van Leeuwenhoek 2014;105:325-333.
  • 20. Richter M, Rossello-Mora R, Oliver Glockner F, Peplies J. JSpeciesWS:a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016;32:929-931.
  • 21. Bystrykh LV, Fernandez-Moreno MA, Herrema JK, Malpartida F, Hopwood DA,et al. Production of actinorhodin-related "blue pigments" by Streptomyces coelicolor A3(2). J Bacteriol 1996;178:2238-2244.
  • 22. Giuffre A, Borisov VB, Arese M, Sarti P, Forte E. Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochimica et Biophysica Acta (BBA)-Bioenergetics 2014;1837:1178-1187.
  • 23. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019;47:W81-W87.
  • 24. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 2009;37:D233-D238.
  • 25. Zhang H, Yohe T, Huang L, Entwistle S, Wu P, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018;46:W95-W101.
  • 26. Tolonen AC, Haas W, Chilaka AC, Aach J, Gygi SP, et al. Proteome - wide systems analysis of a cellulosic biofuel -producing microbe. Mol Syst Biol 2011;7:461.
  • 27. Bauer A. Antibiotic susceptibility testing by a standardized single disc method. Am J clin pathol 1966;45:149-158.
  • 28. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982;16:584-586.
  • 29. Kuykendall L, Roy M, O'Neill J, Devine T. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Evol Microbiol 1988;38:358-361.
  • 30. Tindall B. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199-202.
  • 31. Tindall B. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128-130.
  • 32. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870-1874.
  • 33. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406-425.