Published December 31, 2013 | Version v1
Taxonomic treatment Open

Agyneta Hull 1911

Description

Agyneta Hull, 1911

Agyneta Hull 1911: 583. Type species Microneta passiva (O. Pickard-Cambridge 1906).

Anomalaria Dahl 1912: 611. Type species Agyneta subtilis (O. Pickard-Cambridge 1863).

Meioneta Hull 1920: 9. Type species Meioneta rurestris (C.L. Koch 1836). SYNONYMY REAFFIRMED Aprolagus Simon 1929: 534 –535, 718–719. Type species Aprolagus saxatilis (Backwall 1844).

Syedrula Simon 1929: 534 –536, 715. Type species Syedrula innotabilis (O. Pickard-Cambridge1863). Ischnyphantes Simon 1929: 717 –718. Type species Ischnyphantes rurestris (C.L. Koch 1836).

Gnathantes Chamberlin & Ivie 1943: 5. Type species Gnathantes ferosa Chamberlin & Ivie 1943.

Diagnosis: Agyneta males and females can be distinguished from those of the closely related genus, Tennesseellum by the position of the spiracle, in Agyneta the spiracle is positioned close to the spinnerets (Fig. 31) whereas in Tennesseellum the spiracle is positioned midway between the spinnerets and the epigastric groove (Fig. 33), from Anibontes by the finely reticulate sternum not extending between coxae (Fig. 593), whereas in Agyneta the sternum extend between the coxae (Fig. 7). From all other North American Linyphiidae Agyneta males are distinguished by the sickle-shaped embolus attached basally by a folded membrane, and bearing a projecting embolus proper on its retrolateral surface (Figs 34, 35). Females are distinguished by their folded scapes ending in well developed lateral lobes, in ventral view the lateral lobes appears as eye-liked structure (Fig. 36).

Description: Male: Total length: 1.1–2.6, female: Total length: 1.6–2.5.

Carapace variable; yellow, orange to light brown; suffused with gray along radiating lines, with or without trident marking (Fig. 258); oval (Fig. 3) to elongate oval (Fig. 258); reticulate; in lateral view anterior part slightly elevated (Fig. 2); fovea not visible. Clypeus; height low 1–2, medium 3–4 or high 5 (Fig. 1); straight or protruding. Eyes; eight in pairs; anterior median eyes (AME) circular, usually the smallest, anterior lateral eyes (ALE) and posterior lateral eyes (PLE) circular, more or less of equal size, posterior median eyes (PME) circular typically the largest. Sternum; yellow, orange or light brown; slightly or strongly suffused with gray; smooth or somewhat reticulate; as long as wide; extending between coxae (Fig. 7). Endites; as long as wide, serrula present (only observed in A. decora, A. rurestris) (Fig. 8). Labium; rebordered, fused to the sternum (Fig. 8). Chelicerae; promargin and retromargin with small teeth or denticles; cheliceral stridulatory organ always present (Fig. 4), the striae can be more or less pronounced, and more or less widely spaced. Two forms of chelicerae are found in Agyneta males. The common form has a long paturon (visibly much longer than wide) and long and narrow fangs (Fig. 21). In this form, the paturon may be excavated (Figs 24–26) or not excavated (Fig. 23). On the retromarginal and promarginal side of the paturon, near the base of the fang, there is sometimes a triangular or rounded projection (ppr) (Fig. 26). Variation occurs; in A. fabra, the paturon of the male bears a mastidion (Figs 21, 395), and in other species the paturon has seta-tipped tubercles (h-tip) (Fig. 26). In A. fillmorana two morphs exist, males with extremely elongated chelicerae (Figs 22, 179) and extremely long fangs along with males with normal size chelicerae (Fig. 180). In the second form, the paturon is shorter (slightly longer than wide) and the fangs are short and wide as well. The paturon is always slightly excavated and no seta-tipped tubercles nor triangular or rounded projections are ever found on it (Figs 1, 5). Abdomen; more or less oval (Figs 176–178) to elongated (Figs 258, 269); uniformly light to dark gray (Fig. 304) or patterned (Figs 189, 190); spiracles near base of spinnerets (Fig. 31). Shape of abdomen is mentioned in species descriptions only if it is other than oval. Spinnerets; studied here only for the adult male of A. decora (A. rurestris and A. ramosa studied in Arnedo et al. 2009), ALS with one major ampullate spigot and eight to ten piriform spigots, PMS with one minor ampullate spigot and two aciniform spigots, PLS with one of the triplet spigots retained (presumably one of the aggregate spigots) and three aciniform spigots (Fig. 6); and for female of A. rurestris (Fig. 11), ALS with one major ampullate spigot and ten piriform spigots (Fig. 12 a), PMS with one cylindrical, two aciniform, one minor ampullate spigot (Fig. 12 b) and PLS with at least one cylindrical, and numerous aciniform spigots, two aggregate and one flagelliform spigots (Fig. 12 c). Colulus; triangular with a ~ 4–6 setae. Legs: usually uniformly colored, occasionally patterned; leg formula 4123, two dorsal tibial spines, TmI present (0.13–0.93); TmIV present or absent; female palpal tarsus normal or enlarged, without claw. Respiratory system: illustrated here only for A. decora, (A. subtilis, A. saxatilis studied by Blest 1976, A. rurestris studied by Hormiga 1994), desmistracheate (Figs 29 a–b, 31) with two median tracheae (mtr) and the two lateral tracheae (ltr) which are less than half the diameter of the median tracheae (Fig. 29 a, 31) and one spiracle (Fig. 30). Hormiga (1994a: 44) found for A. rurestris “a tracheal atrium that opens via a single spiracle”. I observed the same conformation in Agyneta, Anibontes and Tennesseellum (Figs 31, 32, 33).

Genitalia: The palpal tibia of Agyneta males can have quite elaborate apophyses, the tibia can possess a retrolateral tibial apophysis (rta) and a dorsal tibial apophysis (dta) of various shapes and forms, rugose or smooth (Figs 290, 316, 326). The dorsal tibial apophysis is sometimes difficult to characterize. It can be very distinct from the retrolateral tibial apophysis, but most of the time it is continuous with the retrolateral tibial apophysis and not so well-sclerotized (Figs 213, 361). The tibia bears one or two trichobothria retrolaterally, one dorsally, none prolaterally (Figs 64, 108). The cymbium is more or less elevated dorsally, from rounded, triangular to conical (Figs 72, 137, 421). The retrolateral side can bear a glabrous depression (gd) (Figs 213, 238) corresponding to the hairless depression of Saaristo (1973: 462). In some species, mainly from southern USA, this depression is absent (Figs 520, 529, 538, 546, 550, 562). The fillmorana group has a distinctive retrolateral fold (rlf) adjacent to the glabrous depression (Figs 172, 185, 195, 197, 202, 209). About midway along the retrolateral margin there is a notch (rln) and at the base there is a membranous region (mr) with which the paracymbium articulates (Fig. 64). The prolateral side also bears an apical notch (pln) and some basal cymbial tubercles (t) (Fig. 65). Saaristo (1973: 462), described the tubercles as “a small tubercle (st), and behind it a big tubercle (bt) which is partly contiguous with the prolateral tooth (plt)”. The terminology used by Saaristo can be somewhat confusing as, in some species, the “small tubercle” is big and the “big tubercle” is small, as in A. crawfordi, A. spicula (Figs 210, 317). Here I use the term dorsal tubercle (dt) for the tubercle more dorsally situated on the cymbium (corresponding to Saaristo’s small tubercle) and ventral tubercle (vt) for the one more ventrally situated and contiguous with the prolateral tooth (corresponding to Saaristo’s big tubercle) (Figs 239, 255). In some species (eg. A. aquila, A. rurestris) there is only one tubercle (Figs 87, 109) or they can be more or less fused (Figs 65, 173) has in A. decora, A. fillmorana, making their homology assessement more difficult. The tubercles may be smooth or rugose (Figs 203, 347).

Saaristo (1973: 462, figs 33–37) divided the paracymbium into three regions, 1) the proximal part with some setae, 2) a middle part with two depressions, the anterior pocket of paracymbium (apo), which can be short to very long, and is sometimes fused with the posterior pocket of paracymbium (ppo), which can be long, short or, spinelike, and 3) and the apical part with a the apical pocket of paracymbium (appo) (Fig. 64) which is always present, except in A. decorata (Fig. 562).

The bulb can be divided into six main regions, which are all associated with the sperm duct: the subtegulum, tegulum (te), suprategulum (spt), column (co), radix (r) and the embolus (e) (Figs 34, 35). The subtegulum and tegulum are simple sclerites without projections. The suprategulum is more or less triangular, apically with a well sclerotized pointed tip apically. The distal suprategular apophysis (dsa), is an important structure used in copulation, as the tip of the distal suprategular apophysis is pushed in the stretcher pit of the epigynum (van Heldsingen 1965). The distal suprategular apophysis medially bears a transparent column (co) to which is attached a translucent, elongated embolic membrane (em) (Fig. 35). The column (co) is attached to the radix retrolaterally by a well sclerotized pillar (pi) (Fig. 41). Retrolaterally the radix is well-sclerotized peripherally, and membranous centrally. Apically there is a blunt hook (bh) and dorsally a small to large bulge (bu) (Figs 41, 111). In a few species there are some small spines scattered on the surface of the radix (Figs 75, 82). Attached to the membranous part of the radix are three sclerites, more or less attached to each other. First is the anterior terminal apophysis (ata), a more or less sclerotized, elongated sclerite with or without protrusions at the tip. Second is the posterior terminal apophysis (pta), a shorter, more sclerotized sclerite with various shapes and forms, with or without associated prongs. Finally at the tip of the radix lies the lamella characteristica (lc), a very complex sclerite with multiples prongs, folds, and various textures (Figs 41, 111, 175, 216).

Also attached to the radix there is a sickle-shaped, well sclerotized embolus (e), that can be divided into apical and basal parts (Fig. 40). The base of the embolus has a folded membranous section (mfo), and it is attached to the membranous part of the radix. The embolus is on the prolateral-basal side of the radix, whereas the sclerites are on its retrolateral side (Figs 34, 35). The embolus is more or less movable through this membranous part and can be detached easily at this point without breaking. The embolus can harbor different kinds of prongs, flanges or spines basally, medially or apically (Figs 74, 174, 356, 382). Prolaterally the embolus has a more or less oval, short or elongated but very well sclerotized swelling which appears to be a reinforcement point (rp) for the apical part of the embolus (Fig. 40). On its dorsal side the embolus bears a more or less elongated smooth, process, the thumb (th) and on its ventral side a transparent, smooth or rugose lamella, the ventral lamella (vl) (Figs 40, 110, 427). The ventral lamella reaches the base of the embolus proper, since it is transparent it is sometimes difficult to distinguish and differentiate from other processes. In some species it is clearly absent (Figs 427, 434, 441). The embolus proper (ep) is a more or less triangular projection, of variable size where the sperm duct (sd) ends, situated on the retrolateral side of the embolus. The sperm duct divides the embolus proper in two parts, those parts can be of more or less equal size (Figs 40, 99) or one part can be much larger than the other part (Figs 74, 139, 174). It can bet set apically (Fig. 40), medially (Fig. 382) or basally (Fig. 240). The embolus proper may be fixed in place along a horizontal ridge associated with the tip of the embolus (Figs 40, 110). This basic form is found in the decora, rurestris, picta and llanoensis groups. In the lophophor group the embolus proper is fixed on a short horizontal ridge, but it’s difficult to determine if it is associated with the tip of embolus. In the fillmorana group the dorsal part of the embolus proper is serrated and crest-like, reaching the tip of the embolus (Figs 27, 174, 187). In the vinki group, the embolus proper is set on a horizontal ridge as well but linked with the retro-basal side of the embolus tip in correlation with a projection (Fig. 215 arrow). The fratrella group has a unique configuration where the embolus proper is set basally, and covered by the sclerotized tip of the thumb (Figs 240, 248, 252). In the parva group the embolus proper is set on a long or short vertical ridge, not associated with the embolus tip (Figs 292, 311). The micaria group has the embolus proper set medially or apically and not associated with the embolus tip (Figs 382, 392, 404, 414, 423).

The sperm duct runs from the membranous base of the embolus, through the embolus to end in the embolus proper. Through its course in the embolus, the sperm duct may be enlarged into a gland, the Fickert’s gland (fg). The Fickert’s gland can be set medially (Fig. 392) or basally (Fig. 106) within the embolus and can be globular (Fig. 199) or more or less elongated (Fig. 240). When the Fickert’s gland was observed within a species, multiple specimens were studied and in every case the Fickert’s gland was present.

The epigynum consists of a folded scape of the ventral plate. When untreated the epigynum appears to have an oval sclerotized plate with two large slits. These epigynal slits (sl) are filled by eye-like, transparent structures, the lateral lobes (ll) (Figs 36, 112). The middle part, the proximal part of scape (pps) can take many shapes from triangular to oval, with or without an indentation, the pit hook depression (phd) (Figs 36, 229, 358). Underneath the pit hook depression there can be a knob-liked structure, the stretcher (st) (Fig. 36). When treated with 10% KOH the scape unfolds, and can be separated into three regions (Saaristo & Tanasevitch 1996: 171), the proximal part (pps), the median part (mps) and the distal part of scape (dps) (see Paquin et al. 2009, figs 11, 22). The distal part of scape is composed of the lateral lobes (ll), the lateral lobes pockets (po), the stretcher (st) and the pit (pi) (Figs 36– 39). The genital pores (gp) can be situated in the distal part of the scape (in the lateral lobes, or at the base of the lateral lobe pockets) or in the median part (Figs 114, 220, 245, 411). The copulatory ducts (cd) runs from the genital pores to the receptacula throughout the scape, they can be straight or undulate (Fig. 37, 334). The internal genitalia is composed of one or two receptacula (re) of different shapes and oriented in various positions (Figs 37, 149, 359, 536). The fertilization ducts are difficult to observed under compound scope, seeing that they are not well sclerotized, they are best observed in dorsal view and are positioned on the dorsal side of the receptacula and directed inward (Figs 38, 129, 136).

Composition: The genus Agyneta presently contains 191 described species: A. adami Millidge 1991, A. affinis (Kulczyn'ski 1898), A. affinisoides (Tanasevitch 1984), A. albinotata Millidge 1991, A. alboguttata Jocqué 1985, A. albomaculata Baert 1990, A. allosubtilis Loksa 1965, A. alpica (Tanasevitch 2000), A. amersaxatilis (Saaristo & Koponen 1998), A. angulata (Emerton 1882), A. aquila Dupérré 2013, A. arida Baert 1990, A. arietans (O.P.- Cambridge 1872), A. barfoot Dupérré 2013, A. barrowsi Chamberlin & Ivie 1944, A. bermudensis (Strand 1906), A. birulai (Kulczyn'ski 1908), A. birulaioides (Wunderlich 1995), A. boninensis Saito 1982, A. breviceps Hippa & Oksala 1985, A. brevipes (Keyserling 1886), A. brevis Millidge 1991, A. bronx Dupérré 2013, A. brusnewi (Kulczyn'ski 1908), A. bucklei Dupérré 2013, A. bueko Wunderlich, 1983, A. canariensis (Wunderlich 1987), A. castanea Millidge 1991, A. catalina Dupérré 2013, A. cauta (O.P.- Cambridge 1902), A. chiricahua Dupérré 2013, A. cincta, A. collina Millidge 1991, A. conigera (O. P.- Cambridge 1863), A. crawfordi, A. crista Dupérré 2013, A. curvata Bosmans 1979, A. dactylis Tao, Li & Zhu 1995, A. danielbelangeri, A. darrelli Dupérré 2013, A. decora (O.P.- Cambridge 1871), A. decorata Chamberlin & Ivie 1944, A. decurvis Tao, Li & Zhu 1995, A. delphina Dupérré 2013, A. dentifera Locket 1968, A. depigmentata (Wunderlich 2008), A. discolor, A. disjuncta Millidge 1991, A. dynica Saaristo & Koponen 1998, A. emertoni (Roewer 1942), A. equestris (L. Koch 1881), A. erinacea Dupérré 2013, A. evadens (Chamberlin 1925), A. exigua Russell-Smith 1992, A. fabra (Keyserling 1886), A. falcata Li & Zhu 1995, A. fillmorana (Chamberlin 1919), A. flandroyae Jocqué 1985, A. flavipes Ono 1991, A. flax, A. flibuscrocus Dupérré 2013, A. floridana (Banks 1896), A. fratrella (Chamberlin 1919), A. frigida, A. fusca Millidge 1991, A. fuscipalpa (C. L. Koch 1836), A. gagnei Gertsch 1973, A. galapagosensis Baert 1990, A. girardi Dupérré 2013, A. gracilipes Holm 1968, A. grandcanyon Dupérré 2013, A. gulosa (L. Koch 1869), A. habra Locket 1968, A. hedini Paquin & Dupérré 2009, A. ignorata Saito 1982, A. innotabilis (O.P.- Cambridge 1863), A. insolita Locket & Russell-Smith 1980, A. insulana (Tanasevitch, 2000), A. iranica (Tanasevitch 2011), A. issaqueena Dupérré 2013, A. jacksoni Braendegaard 1937, A. jiriensis Wunderlich 1983, A. kaszabi Loksa 1965, A. kopetdaghensis (Tanasevitch 1989), A. laimonasi (Tanasevitch 2006), A. larva Locket 1968, A. lauta Millidge 1991, A. ledfordi Dupérré 2013, A. leucophora Chamberlin & Ivie 1944, A. levii (Tanasevitch 1984), A. levis Locket 1968, A. lila (Dönitz & Strand 1906), A. llanoensis (Gertsch & Davis 1936), A. longipes Chamberlin & Ivie 1944, A. lophophor (Chamberlin & Ivie 1933), A. luctuosa Millidge 1991, A. manni Crawford & Edwards 1989, A. maritima (Emerton 1919), A. martensi Tanasevitch 2006, A. mediocris, A. mendosa Millidge 1991, A. merretti Locket 1968, A. mesasiatica (Tanasevitch 2000), A. metropolis Russell-Smith & Jocqué 1986, A. micaria (Emerton 1882), A. milleri Thaler et al. 1997, A. miniata Dupérré 2013, A. minorata Chamberlin & Ivie 1944, A. mollis (O.P.- Cambridge 1871), A. mongolica Loksa 1965, A. montana, A. montivaga Millidge 1991, A. mossica Schikora 1993, A. muriensis Wunderlich 1983, A. natalensis Jocqué 1984, A. nigra Oi 1960, A. nigripes (Simon 1884), A. nigripes nivicola (Simon 1929), A. obscura Denis 1950, A. oculata Millidge 1991, A. okefenokee Dupérré 2013, A. olivacea (Emerton 1882), A. opaca Millidge 1991, A. ordinaria Chamberlin & Ivie 1947, A. orites (Thorell 1875), A. pakistanica Tanasevitch 2011, A. palgongsanensis Paik 1991, A. palustris Li & Zhu 1995, A. panthera, A. paquini Dupérré 2013, A. paraprosecta (Tanasevitch 2010), A. parva (Banks 1896), A. perspicua Dupérré 2013, A. picta Chamberlin & Ivie 1944, A. pinta Baert 1990, A. pistrix Dupérré 2013, A. plagiata (Banks 1929), A. platnicki Dupérré 2013, A. pogonophora Locket 1968, A. prima, A. propinqua, A. propria Millidge 1991, A. prosectes Locket 1968, A. prosectoides Locket & Russell-Smith 1980, A. protrudens (Chamberlin & Ivie, 1933), A. proxima Millidge 1991, A. pseudofuscipalpis (Wunderlich 1983), A. pseudorurestris (Wunderlich 1980), A. pseudosaxatilis (Tanasevitch 1984), A. punctata (Wunderlich 1995), A. ramosa Jackson 1912, A. regina Chamberlin & Ivie 1944, A. resima (L. Koch 1881), A. ressli Wunderlich 1973, A. ripariensis (Tanasevitch 1984), A. rufidorsa Denis 1961, A. rugosa Wunderlich 1992, A. rurestris (C.L. Koch 1836), A. saaristoi (Tanasevitch 2000), A. sandia Dupérré 2013, A. saxatilis (Blackwall 1844), A. semipallida Chamberlin & Ivie 1944, A. serrata (Emerton 1909), A. serratichelis Denis 1964, A. serratula (Wunderlich 1995), A. sheffordiana (Dupérré & Paquin 2007), A. silvae Millidge 1991, A. similis (Kulczyn'ski 1926), A. simplex (Emerton 1926), A. simplicitarsis (Simon 1884), A. spicula Dupérré 2013, A. straminicola Millidge 1991, A. subnivalis (Tanasevitch 1989), A. subtilis (O. P.- Cambridge 1863), A. suecica Holm 1950, A. tenuipes Ono 2007, A. tianschanica (Tanasevitch 1989), A. tibialis (Tanasevitch 2005), A. tincta Jocqué 1985, A. transversa (Banks 1898), A. trifurcata Hippa & Oksala 1985, A. tuberculata Dupérré 2013, A. unicornis Tao, Li & Zhu 1995, A. unimaculata (Banks 1892), A. usitata Locket 1968, A. uta (Chamberlin 1920), A. uzbekistanica (Tanasevitch 1984), A. vera (Wunderlich 1976), A. vinki, A. watertoni, A. yukona Dupérré 2013, A. yulungiensis Wunderlich 1983.

Distribution: Agyneta has a worldwide distribution and species occur on every continent except for Antarctica. The majority of the fauna occurs in the Nearctic (33%) and Palearctic (31%) regions. The Neotropical region contains 16% of the fauna, mostly found in South America. In the Neotropic, 91% of the fauna occurs in South America and only 9% are known to occur in Mexico, Central America and the Caribbean. I have examined a fair number of new species from Mexico, Central America and the Caribbean, as such the number of species of Agyneta should increase significantly in these regions. The Afrotropical region contains 9% of the fauna, the Indomalayan 8%, Australasia 1% and only 2% of the fauna has and Holarctic distribution.

Natural History: In North America, Agyneta species are found in different environments, but most species are found in forested habitats. From the data included on the labels we can ascertain that A. allosubtilis is mostly found in spruce forests and bogs. A. vinki, A. panthera, A. fratrella are generally found in deciduous forests and A. bucklei, A. minorata A. barrowsi occur in oak and oak-pine forests. A. parva, A. picta and A. serrata are found in hardwood hammock forests. A few species seem to prefer non-forested habitats, A. unimaculata, A. fabra, A.

lophophor are found in pastures, prairies and fields. Some species are simply generalists, A. simplex can be found in alpine meadows as well as in prairies.

In Newfoundland Pickavance & Dondale (2005) reported that A. allosubtilis is found in mixed coniferous woods in shrubby areas, A. amersaxatilis and A. simplex are found in exposed rocky coastal area, A. dynica occurs in rocky coastal area as well as in alpine regions and coniferous woods and A. fabra, A. jacksoni and A. olivacea are found in coniferous woods.

In Nunavut Agyneta maritima was found in gravel without vegetation and in sedge meadow (Pickavance 2006). In Yukon, A. lophophor was found in moss on sagebrush-covered slopes and on dunes (Dondale et al. 1997).

Some species prefer alpine habitat A. olivacea, A. maritima are found in alpine tundra (Dondale et al. 1997) as well A. jacksoni A. maritima A. mollis, A. nigripes have been reported in alpine habitats by Nagy & Grabehrr (2009).

A. manni is found in subalpine and alpine environments in the Central Cascade Mountains of Washington (Crawford & Edwards 1989), and now has been found under rocks at high elevation in southwestern British Columbia and is consider a Pacific Northewest endemic (Bennett & Copley 2011).

Two species of Agyneta are considered troglophiles in North America, A. llanoensis and A. hedini. A. llanoensis has been found in numerous caves mostly in Texas, "where it spins sizeable webs among rocks on the ground, or in various depressions, in which the spider hangs upside down" (Paquin et al. 2009) and A. hedini has been found in the dark zone of two caves one in Colorado and one in Arizona. The only completely blind Agyneta therefore consider a true troglobite occurs in Hawaii and was described by Gertsch (1973).

Not much is known about Agyneta phenology, A. fabra females and juveniles overwinter while the males are present in summer (Aitchinson 1984), in A. manni both sexes mature in July or early August only a short time aftre snow melt (Crawford & Edwards 1989).

Blandenier & First (1998) collected spiders in suction trap from an agricultural landscape in Switzerland. In there study Agyneta rurestris was one of the more abundant Linyphiidae collected while ballooning. Based on the data from labels at least, A. simplex, A crista and A. girardi have been collected while ballooning.

Notes

Published as part of Dupérré, Nadine, 2013, Taxonomic revision of the spider genera Agyneta and Tennesseellum (Araneae, Linyphiidae) of North America north of Mexico with a study of the embolic division within Micronetinae sensu Saaristo & Tanasevitch 1996, pp. 1-189 in Zootaxa 3674 (1) on pages 8-17, DOI: 10.11646/zootaxa.3674.1.1, http://zenodo.org/record/283954

Files

Files (27.1 kB)

Name Size Download all
md5:f141a1545ea19a76f95093e372d47392
27.1 kB Download

System files (277.4 kB)

Name Size Download all
md5:2dc9fce6fbf063d0291e299e7a90d4ad
277.4 kB Download

Linked records

Additional details

Biodiversity

Family
Linyphiidae
Genus
Agyneta
Kingdom
Animalia
Order
Araneae
Phylum
Arthropoda
Scientific name authorship
Hull
Taxon rank
genus
Taxonomic concept label
Agyneta Hull, 1911 sec. Dupérré, 2013

References

  • Hull, J. E. (1911) Papers on spiders. Transactions of the Natural History Society of Northumberland (N. S.), 3 (3), 573 - 590.
  • Pickard-Cambridge, O. (1906) On some new and rare British Arachnida. Proceedings of the Dorset Natural History and Antiquarian Field Club, 27, 72 - 92.
  • Dahl, F. (1912) Uber die Fauna des Plagefenn-Gebietes. In: Conwentz, H. (ed.), Das Plagefenn bei Choren. Berlin, pp. 339 - 638. [Araneae, 575 - 622]
  • Pickard-Cambridge, O. (1863) Description of twenty-four new species of spiders lately discovered in Dorsetshire and Hampshire; together with a list of rare and some other hitherto unrecorded British spiders. Zoologist, 21, 8561 - 8599.
  • Hull, J. E. (1920) The spider family Linyphiidae: an essay in taxonomy. Vasculum, 6, 7 - 11.
  • Koch, C. L. (1836) Die Arachniden. Nurnberg, Dritter Band, 104 pp.
  • Simon, E. (1929) Les arachnides de France. Synopsis generale et catalogue des especes francaises de l'ordre des Araneae; 3 e partie. Paris, 6, 533 - 772.
  • Blackwall, J. (1844) Descriptions of some newly discovered species of Araneida. The Annales and Magazine of natural History, 13, 179 - 188.
  • Chamberlin, R. V. & Ivie, W. (1943) New genera and species of North American linyphiid spiders. Bulletin of the University of Utah, 33 (10), 1 - 39.
  • Arnedo, M. A., Hormiga, G. & Scharff, N. (2009) Higher-level phylogenetics of linyphiid spiders (Araneae, Linyphiidae) based on morphological and molecular evidence. Cladistics, 25, 231 - 262. http: // dx. doi. org / 10.1111 / j. 1096 - 0031.2009.00249. x
  • Hormiga, G. (1994 a) Cladistics and the comparative morphology of linyphiid spiders and their relatives (Araneae, Araneoidea, Linyphiidae). Zoological Journal of the Linnean Society, 111, 1 - 71. http: // dx. doi. org / 10.1111 / j. 1096 - 3642.1994. tb 01491. x
  • Saaristo, M. I. (1973) Taxonomical analysis of the type-species of Agyneta, Anomalaria, Meioneta, Aprolagus, and Syedrula (Araneae, Linyphiidae). Annales Zoologici Fennici, 10, 451 - 466.
  • Saaristo, M. I. & Tanasevitch, A. V. (1996) Redelimitation of the subfamily Micronetinae Hull, 1920 and the genus Lepthyphantes Menge, 1866 with descriptions of some new genera (Aranei, Linyphiidae). Bericht des Naturwissens- Medizinischen Verein Innsbruck, 83, 163 - 186.
  • Paquin, P., Duperre, N. & Reddell, J. R. (2009) A new troglophilic Agyneta from Colorado, the first description of the female of Agyneta llanoensis from Texas caves, and a classification of North American cave Linyphiidae (Araneae) as troglobites or troglophiles. Texas Memorial Museum, Speleological Monographs, 7, 37 - 56.
  • Millidge, A. F. (1991) Further linyphiid spiders (Araneae) from South America. Bulletin of the American Museum of Natural History 205, 1 - 199.
  • Tanasevitch, A. V. (1984) New species of spiders of the genus Agyneta Hull, 1911 (Aranei, Linyphiidae) from Siberia and central Asia. Nauchnye Doklady Vysshei Shkoly Biologi-cheskie Nauk, 1984 (5), 47 - 53.
  • Jocque, R. (1985) Linyphiidae (Araneae) from the Comoro Islands. Revue de Zoologie Africaine, 99, 197 - 230.
  • Baert, L. L. (1990) Spiders of the Galapagos. Part V. Linyphiidae. Bulletin of the British Arachnological Society, 8, 129 - 138.
  • Loksa, I. (1965) Araneae. In Ergebnisse der zoologischen Forschungen von Dr. Z. Kaszab in der Mongolei. Reichenbachia, 7, 1 - 32.
  • Tanasevitch, A. V. (2000) On some Palaearctic species of the spider genus Agyneta Hull, 1911, with description of four new species (Aranei: Linyphiidae). Arthropoda Selecta, 8, 203 - 213.
  • Saaristo, M. I. & Koponen, S. (1998) A review of northern Canadian Spiders of the genus Agyneta (Araneae: Linyphiidae), with descriptions of two new species. Canadian Journal of Zoology, 76 (3), 566 - 583.
  • Emerton, J. H. (1882) New England spiders of the family Theridiidae. Transactions of the Connecticut Academy of Arts and Sciences, 6, 1 - 86.
  • Pickard-Cambridge, O. (1872) Descriptions of twenty-four new species of Erigone. Proceedings of the Zoological Society of London, 1872, 747 - 769.
  • Chamberlin, R. V. & Ivie, W. (1944) Spiders of the Georgia region of North America. Bulletin of the University of Utah, 35 (9), 1 - 267.
  • Wunderlich, J. (1995) Linyphiidae aus der Mongolei (Arachnida: Araneae). Beitrage zur Araneologie, 4, 479 - 529.
  • Saito, H. (1982) Soil dwelling linyphiine and erigonine spiders from Ogasawara Islands, Japan. Edaphologia, 25 - 26, 33 - 39.
  • Hippa, H. & Oksala, I. (1985) A review of some Holarctic Agyneta Hull s. str. (Araneae, Linyphiidae). Bulletin of the British Arachnological Society, 6, 277 - 288.
  • Keyserling, E. (1886) Die Spinnen Amerikas. Theridiidae. Nurnberg, 295 pp.
  • Wunderlich, J. (1983) Linyphiidae aus Nepal, IV. Bisher unbekannte und fur Nepal neue Arten (Arachnida: Araneae). Senckenbergiana biologica, 63, 219 - 248.
  • Wunderlich, J. (1987) Die Spinnen der Kanarischen Inseln und Madeiras: Adaptive Radiation, Biogeographie, Revisionen und Neubeschreibungen. Triops Verlag, Langen, West Germany, 435 pp.
  • Pickard-Cambridge, O. (1902) On new and rare British Arachnida. Proceedings of the Dorset Natural History and Antiquarian Field Club, 23, 16 - 40.
  • Bosmans, R. (1979) Spiders of the subfamily Linyphiinae from Mount Kenya (Araneae - Linyphidae). Scientific report of the Belgian, Mt. Kenya Bio-Expedition 1975, n ° 17. Revue de Zoologie Africaine, 93, 53 - 100.
  • Tao, Y., Li, S. Q. & Zhu, C. D. (1995) Linyphiid spiders of Changbai Mountains, China (Araneae: Linyphiidae: Linyphiinae). Beitrage zur Araneologie, 4, 241 - 288.
  • Pickard-Cambridge, O. (1871) Descriptions of some British spiders new to science, with a notice of others, of which some are now for the first time recorded as British species. Transactions of the Linnean Society of London, 27, 393 - 464. http: // dx. doi. org / 10.1111 / j. 1096 - 3642.1871. tb 00218. x
  • Locket, G. H. (1968) Spiders of the family Linyphiidae from Angola. Publicoes Culturais da Companhia de Diamantes de Angola, 71, 61 - 144.
  • Borges, P. A. V. & Wunderlich, J. (2008) Spider biodiversity patterns and their conservation in the Azorean archipelago, with descriptions of new species. Systematics and Biodiversity, 6, 249 - 282. http: // dx. doi. org / 10.1017 / S 1477200008002648
  • Roewer, C. F. (1942). Katalog der Araneae von 1758 bis 1940. Bremen, 1, 1 - 1040.
  • Koch, L. (1881) Beschreibungen neuer von Herrn Dr Zimmermann bei Niesky in der oberlausitz endeckter Arachniden. Abhandlungen und Berichte Naturforschende Gesellschaft zu Gorlitz, 17, 41 - 71.
  • Chamberlin, R. V. (1925) New North American spiders. Proceedings of the California Academy of Sciences, (4) 14, 105 - 142.
  • Russell-Smith, A. (1992) Meioneta exigua, replacement name for Meioneta parva Locket & Russell-Smith (1980) Araneae: Linyphiidae. Bulletin of the British Arachnological Society, 9, 32.
  • Chamberlin, R. V. (1919) New western spiders. Annals of the entomological Society of America, 12, 239 - 260.
  • Ono, H., Kumada, K., Sadamoto, M. & Shinkai, E. (1991) Spiders from the northernmost areas of Hokkaido, Japan. Memoirs of the National Science Museum, Tokyo, 24, 81 - 103.
  • Banks, N. (1896) New North American spiders and mites. Transactions of the American Entomological Society, 23, 57 - 77.
  • Gertsch, W. J. (1973) The cavernicolous fauna of Hawaiian lava tubes. 3. Araneae (Spiders). Pacific Insects, 15 (1), 163 - 180.
  • Holm, A. (1968) Spiders of the families Erigonidae and Linyphiidae from East and Central Africa. Annales du Musee Royale de l'Afrique Centrale, 171, 1 - 49.
  • Koch, L. (1869) Beitrag zur Kenntniss der Arachnidenfauna Tirols. Zeitschrift des Ferdinandeums fur Tirol und Vorarlberg, (3) 14, 149 - 206.
  • Locket, G. H. & Russell-Smith, A. (1980) Spiders of the family Linyphiidae from Nigeria. Bulletin of the British Arachnological Society, 5, 54 - 90
  • Tanasevitch, A. V. (2011) A new Agyneta Hull, 1911 from Iran (Araneae, Linyphiidae, Micronetinae). Revue Suisse de Zoologie, 118, 45 - 48.
  • Braendegaard, J. (1937) Spiders (Araneina) from southeast Greenland. Meddelelser Gronland, 108 (4), 1 - 15.
  • Tanasevitch, A. V. (1989) The linyphiid spiders of Middle Asia (Arachnida: Araneae: Linyphiidae). Senckenbergiana biologica, 69, 83 - 176.
  • Tanasevitch, A. V. (2006) Five new Linyphiidae spiders from the Russian Far East, with notes on synonymy (Arachnida: Aranei). Arthropoda Selecta, 15, 29 - 38.
  • Gertsch, W. J. & Davis, L. I. (1936) New spiders from Texas. American Museum Novitates, 881, 1 - 21.
  • Chamberlin, R. V. & Ivie, W. (1933) Spiders of the Raft River Mountains of Utah. Bulletin of the University of Utah, 23 (4), 1 - 79.
  • Crawford, R. L. & Edwards, J. S. (1989) Alpine spiders and harvestmen of Mount Rainier, Washington, U. S. A.: Taxonomy and bionomics. Canadian Journal of Zoology, 67, 430 - 446. http: // dx. doi. org / 10.1139 / z 89 - 064
  • Emerton, J. H. (1919) The spiders collected by the Canadian Arctic Expedition 1913 - 18. In Report of the Canadian Arctic Expedition, 3 (H), 1 - 8.
  • Russell-Smith, A. & Jocque, R. (1986) New species and records of Linyphiidae (Araneae) from Kenya. Revue de Zoologie Africaine, 99, 439 - 453.
  • Thaler, K., Buchar, J. & Kurka, A. (1997) A new species of Linyphiidae (Araneae) from the sudeto-carpathian range (Czech Republic and Slovakia). Acta Societatis Zoologicae Bohemicae, 61, 389 - 394.
  • Schikora, H. B. (1993) Meioneta mossica sp. n., a new spider close to M. saxatilis (Blackwall) from northern and central Europe. Bulletin of the British Arachnological Society, 9, 157 - 163.
  • Jocque, R. (1984) Linyphiidae (Araneae) from South Africa. Part I: The collection of the Plant Protection Research Institute, Pretoria. Journal of the Entomological Society of South Africa, 47, 121 - 146.
  • Oi, R. (1960) Linyphiid spiders of Japan. Journal of the Institute of Polytechnics, Osaka City University, 11 (D), 137 - 244.
  • Simon, E. (1884) Les arachnides de France. Paris, 5, 180 - 885.
  • Denis, J. (1950) Spiders from East and Central African mountains collected by Dr. G. Salt. Proceedings of the Zoological Society of London, 120, 497 - 502.
  • Chamberlin, R. V. & Ivie, W. (1947) The spiders of Alaska. Bulletin of the University of Utah, 10, 1 - 103.
  • Thorell, T. (1875) Descriptions of several European and North African spiders. Kongliga Svenska Vetenskaps Academiens Handlingar, 13 (5), 1 - 203.
  • Paik, K. Y. (1991) Four new species of the linyphiid spiders from Korea (Araneae: Linyphiidae). Korean Arachnology, 7, 1 - 17.
  • Tanasevitch, A. V. (2010) On synonymy of linyphiid spiders of the Russian fauna (Arachnida: Aranei: Linyphiidae). Arthropoda Selecta, 19 (4), 273 - 282.
  • Banks, N. (1929) Spiders from Panama. Bulletin of the Museum of Comparative Zoology, Harvard, 69, 53 - 96.
  • Wunderlich, J. (1980) Linyphiidae aus Sud-Europa und Nord-Afrika (Arachn.: Araneae). Verhandlungen des Naturwissenschaftlichen Vereins zu Hamburg (N. F.), 23, 319 - 337.
  • Jackson, A. R. (1912) On the British spiders of the genus Microneta. Transactions of the Natural History Society of Northumberland (N. S.), 4, 117 - 142.
  • Wunderlich, J. (1973) Zur Spinnenfauna Deutschlands, XV. Weitere seltene und bisher unbekannte Arten sowie Anmerkungen zur Taxonomie und Synonymie (Arachnida: Araneae). Senckenbergiana Biologica, 54, 405 - 428.
  • Denis, J. (1961) Araignees du Capcir et du Donnezan. Bulletin de la Societe d´Histoire Naturelle de Toulouse, 96, 113 - 128.
  • Wunderlich, J. (1992) Die Spinnen-Fauna der Makaronesischen Inseln: Taxonomie, Okologie, Biogeographie und Evolution. Beitrage zur Araneologie, 1, 1 - 619.
  • Emerton, J. H. (1909) Supplement to the New England Spiders. Transactions of the Connecticut Academy of Arts and Sciences, 14, 171 - 236.
  • Denis, J. (1964) On a collection of erigonid spiders from North Africa. Proceedings of the Zoological Society of London, 142, 379 - 390. http: // dx. doi. org / 10.1111 / j. 1469 - 7998.1964. tb 04504. x
  • Duperre, N. & Paquin, P. (2007) Description of five new spiders from Canada (Araneae: Linyphiidae). Zootaxa, 1632, 1 - 20.
  • Emerton, J. H. (1926) New spiders from Canada and the adjoining states, No. 5. Canadian Entomologist, 58, 115 - 119. http: // dx. doi. org / 10.4039 / Ent 58115 - 5
  • Holm, A. (1950) Studien uber die Spinnenfauna des Tornetraskgebietes. Zoologiska Bidrag Fran Uppsala, 29, 103 - 213.
  • Ono, H. (2007) Eight new species of the families Hahniidae, Theridiidae, Linyphiidae and Anapidae (Arachida, Araneae) from Japan. Bulletin of the National Museum of Nature and Science, Tokyo, 33, 153 - 173.
  • Tanasevitch, A. V. (2005) New or little-known species of Agyneta and Nipponeta from Asia (Aranei: Linyphiidae). Arthropoda Selecta, 13, 165 - 170.
  • Banks, N. (1898) Arachnida from Baja California and other parts of Mexico. Proceedings of the California Academy of Sciences, (3) 1, 205 - 308.
  • Banks, N. (1892) The spider fauna of the Upper Cayuga Lake Basin. Proceedings of the Academy of Natural Sciences of Philadelphia, 1892, 11 - 81.
  • Chamberlin, R. V. (1920) New spiders from Utah. The Canadian Entomologist, 52, 193 - 201. http: // dx. doi. org / 10.4039 / Ent 52193 - 9
  • Wunderlich, J. (1976) Spinnen aus Australien. 2. Linyphiidae (Arachnida: Araneida). Senckenbergiana Biologica, 57, 125 - 142.
  • Pickavance, J. R. & Dondale, C. D. (2005) An annotated checklist of Spiders of Newfoundland. The Canadian Field-Naturalist, 119 (2), 254 - 275.
  • Pickavance, J. R. (2006) The spiders of East Bay, Southampton Island, Nunavut Canada. Arctic, 59 (3), 276 - 282.
  • Dondale, C. D., Redner, J. H. & Maruski, Y. M. (1997) Spiders of Yukon. In: Danks, H. V. & Downes, J. A. (Eds.), Insects of Yukon. Biological Survey of Canada, Ottawa, pp. 73 - 113.
  • Nagy, L. & Grabehrr, G. (2009) The biology of Alpine habitats. Oxford University Press Inc., New York, 363 pp.
  • Bennett, R. & Copley, D. (2011) Whistler BioBlitz. Whistler Biodiversity project, 2010 - 2011. Unpublished report, 1 - 8.
  • Aitchinson, C. W. (1984) The phenology of winter-active spiders. Journal of Arachnology, 12, 249 - 271.
  • Blandenier, G. & Furst, P. - A. (1998) Balloning spiders caught by a suction trap in an agricultural landscape in Switzerland. Proceedings of the 17 th European Colloquium of Arachnology, Edinburg 1997, 177 - 186.