COVID-19 and thyroid disease: clinical course and prognosis
Creators
- 1. State Institution "V. Danilevsky Institute for Endocrine Pathology Problems of the National Academy of Medical Sciences of Ukraine
- 2. Medical Diagnostic Centre «RISHON CLINIC»
Description
The aim is to analyze current scientific data on the prevalence of thyroid dysfunction in patients with COVID-19 and to evaluate the relationship between possible complications of COVID-19 and vaccination.
Materials and methods. Open digital archive of journal articles on biomedical and biological sciences of the National Institutes of Health (USA), developed by the National Center for Biotechnological Information of the National Medical Library (USA) – PubMed, Google Academy and Academic Journals.
Results. The development of thyroid diseases in SARS-CoV-2 may be associated with various mechanisms of its damage, including an excessive immune response, infection-induced immunodeficiency, or direct cell damage due to significant tissue tropism and high affinity of SARS-CoV-2 to thyroid tissue. Possible mechanisms of formation of post-vaccination dysfunction of the thyroid gland are proposed.
Conclusions. Thyroid hormone deficiency is associated with an increased risk of adverse events and in-hospital mortality of COVID-19 and depended on the age of the patient. The severe course of Covid-19 is characterized by an increase in the prevalence of TT secondary to destructive or inflammatory thyroiditis. Thyroid-related thyrotoxicosis exacerbates the clinical course of comorbidities and long-term consequences, such as autoimmune hypothyroidism, which occurs in patients of all ages and with any severity of COVID-19.
The prevalence of TD in patients with COVID-19 varies from 13 to 64 %. 2. The presence of thyroid dysfunction is positively correlated with the clinical severity of COVID-19. Patients with confirmed thyroid disease should receive COVID-19 vaccine to reduce the risk of morbidity and mortality from COVID-19 infection
Files
COVID-19 and thyroid disease clinical course and prognosis.pdf
Files
(578.7 kB)
Name | Size | Download all |
---|---|---|
md5:9aa1e0381b29df961a136f6d5721445c
|
578.7 kB | Preview Download |
Additional details
References
- Chakraborty, U., Ghosh, S., Chandra, A., Ray, A. K. (2020). Subacute thyroiditis as a presenting manifestation of COVID-19: a report of an exceedingly rare clinical entity. BMJ Case Reports, 13 (12), e239953. doi: http://doi.org/10.1136/bcr-2020-239953
- Schimmel, J., Alba, E. L., Chen, A., Russell, M., Srinath, R. (2021). Letter to the Editor: Thyroiditis and Thyrotoxicosis After the SARS-CoV-2 mRNA Vaccine. Thyroid, 31 (9), 1440–1440. doi: http://doi.org/10.1089/thy.2021.0184
- Wu, Z., McGoogan, J. M. (2020). Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China. JAMA, 323 (13), 1239–1242. doi: http://doi.org/10.1001/jama.2020.2648
- Kim, S. Y., Kim, D. W. (2020). Does the Clinical Spectrum of Coronavirus Disease 2019 (COVID-19) Show Regional Differences? Clinical and Experimental Otorhinolaryngology, 13 (2), 83–84. doi: http://doi.org/10.21053/ceo.2020.00612
- Trimboli, P., Cappelli, C., Croce, L., Scappaticcio, L., Chiovato, L., Rotondi, M. (2021). COVID-19-Associated Subacute Thyroiditis: Evidence-Based Data From a Systematic Review. Frontiers in Endocrinology, 12. doi: http://doi.org/10.3389/fendo.2021.707726
- Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y. et. al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395 (10223), 497–506. doi: http://doi.org/10.1016/s0140-6736(20)30183-5
- A Abobaker, A., Darrat, M. (2021). The association between biochemically confirmed thyroid gland disorder and morbidity and mortality in patients with COVID‐19. Journal of Medical Virology, 93 (12), 6449–6450. doi: http://doi.org/10.1002/jmv.27213
- Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z. et. al. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 395 (10229), 1054–1062. doi: http://doi.org/10.1016/s0140-6736(20)30566-3
- Edwards, K., Hussain, I. (2021). Two Cases of Severe Autoimmune Thyrotoxicosis Following SARS-CoV-2 Infection. Journal of Investigative Medicine High Impact Case Reports, 9. doi: http://doi.org/10.1177/23247096211056497
- Kim, S.-Y., Yoo, D.-M., Min, C.-Y., Choi, H.-G. (2021). The Effects of Previous Thyroid Disease on the Susceptibility to, Morbidity of, and Mortality Due to COVID-19: A Nationwide Cohort Study in South Korea. Journal of Clinical Medicine, 10 (16), 3522. doi: http://doi.org/10.3390/jcm10163522
- Bakshi, S. S., Kalidoss, V. K. (2021). Is there an association between hypothyroidism and COVID 19?: A preliminary report. Wiener klinische Wochenschrift, 133 (7-8),414–415. doi: http://doi.org/10.1007/s00508-021-01813-2
- Dworakowska, D., Grossman, A. B. (2020). Thyroid disease in the time of COVID-19. Endocrine, 68 (3),471–474. doi: http://doi.org/10.1007/s12020-020-02364-8
- Sanyaolu, A., Okorie, C., Marinkovic, A., Patidar, R., Younis, K., Desai, P. et. al. (2020). Comorbidity and its Impact on Patients with COVID-19. SN Comprehensive Clinical Medicine, 2 (8), 1069–1076. doi: http://doi.org/10.1007/s42399-020-00363-4
- Dosi, R., Jain, G., Mehta, A. (2020). Clinical Characteristics, Comorbidities,and Outcome among 365 Patients of Coronavirus Disease2019at a Tertiary Care Centre in Central India. The Journal of the Association of Physicians of India, 68 (9),20–23.
- Van Gerwen, M., Alsen, M., Little, C., Barlow, J., Naymagon, L., Tremblay, D. et. al. (2020). Outcomes of Patients With Hypothyroidism and COVID-19: A Retrospective Cohort Study. Frontiers in Endocrinology, 11. doi: http://doi.org/10.3389/fendo.2020.00565
- Brojakowska, A., Eskandari, A., Bisserier, M., Bander, J., Garikipati, V. N. S., Hadri, L. et. al. (2021). Comorbidities, sequelae, blood biomarkers and their associated clinical outcomes in the Mount Sinai Health System COVID-19 patients. PLOS ONE, 16 (7), e0253660. doi: http://doi.org/10.1371/journal.pone.0253660
- Brix, T. H., Hegedüs, L., Hallas, J., Lund, L. C. (2021). Risk and course of SARS-CoV-2 infection in patients treated for hypothyroidism and hyperthyroidism. The Lancet Diabetes & Endocrinology, 9 (4), 197–199. doi: http://doi.org/10.1016/s2213-8587(21)00028-0
- Duntas, L. H., Jonklaas, J. (2021). COVID-19 and Thyroid Diseases: A Bidirectional Impact. Journal of the Endocrine Society, 5 (8). doi: http://doi.org/10.1210/jendso/bvab076
- Hariyanto, T. I., Kurniawan, A. (2020). Thyroid disease is associated with severe coronavirus disease 2019 (COVID-19) infection. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14 (5), 1429–1430. doi: http://doi.org/10.1016/j.dsx.2020.07.044
- Lisco, G., De Tullio, A., Jirillo, E., Giagulli, V. A., De Pergola, G., Guastamacchia, E., Triggiani, V. (2021). Thyroid and COVID-19: a review on pathophysiological, clinical and organizational aspects. Journal of Endocrinological Investigation, 44 (9), 1801–1814. doi: http://doi.org/10.1007/s40618-021-01554-z
- Giovanella, L., Ruggeri, R. M., Ovčariček, P. P., Campenni, A., Treglia, G., Deandreis, D. (2021). Prevalence of thyroid dysfunction in patients with COVID-19: a systematic review. Clinical and Translational Imaging, 9 (3), 233–240. doi: http://doi.org/10.1007/s40336-021-00419-y
- Khoo, B., Tan, T., Clarke, S. A., Mills, E. G., Patel, B., Modi, M. et. al. (2020). Thyroid Function Before, During, and After COVID-19. The Journal of Clinical Endocrinology & Metabolism, 106 (2), e803–e811. doi: http://doi.org/10.1210/clinem/dgaa830
- Ippolito, S., Dentali, F., Tanda, M. L. (2020). SARS-CoV-2: a potential trigger for subacute thyroiditis? Insights from a case report. Journal of Endocrinological Investigation, 43 (8), 1171–1172. doi: http://doi.org/10.1007/s40618-020-01312-7
- Lui, D. T. W., Lee, C. H., Chow, W. S., Lee, A. C. H., Tam, A. R., Fong, C. H. Y. et. al. (2020). Thyroid Dysfunction in Relation to Immune Profile, Disease Status, and Outcome in 191 Patients with COVID-19. The Journal of Clinical Endocrinology & Metabolism, 106 (2), e926–e935. doi: http://doi.org/10.1210/clinem/dgaa813
- Sen, K., Sinha, A., Sen, S., Chakraborty, S., Alam, M. (2020). Thyroid Function Test in COVID-19 Patients: A Cross-Sectional Study in a Tertiary Care Hospital. Indian Journal of Endocrinology and Metabolism, 24 (6), 532–536. doi: http://doi.org/10.4103/ijem.ijem_779_20
- Caron, P. (2020). Thyroid disorders and SARS-CoV-2 infection: From pathophysiological mechanism to patient management. Annales d'Endocrinologie, 81 (5), 507–510. doi: http://doi.org/10.1016/j.ando.2020.09.001
- Șandru, F., Carsote, M., Petca, R., Gheorghisan-Galateanu, A., Petca, A., Valea, A., Dumitrașcu, M. (2021). COVID‑19‑related thyroid conditions (Review). Experimental and Therapeutic Medicine, 22 (1). doi: http://doi.org/10.3892/etm.2021.10188
- Siolos, A., Gartzonika, K., Tigas, S. (2021). Thyroiditis following vaccination against COVID-19: Report of two cases and review of the literature. Metabolism Open, 12, 100136. doi: http://doi.org/10.1016/j.metop.2021.100136
- Trimboli, P., Camponovo, C., Scappaticcio, L., Bellastella, G., Piccardo, A., Rotondi, M. (2021). Thyroid sequelae of COVID-19: a systematic review of reviews. Reviews in Endocrine and Metabolic Disorders, 22 (2), 485–491. doi: http://doi.org/10.1007/s11154-021-09653-1
- Daraei, M., Hasibi, M., Abdollahi, H., Mirabdolhagh Hazaveh, M., Zebaradst, J., Hajinoori, M., Asadollahi‐Amin, A. (2020). Possible role of hypothyroidism in the prognosis of COVID‐19. Internal Medicine Journal, 50 (11), 1410–1412. doi: http://doi.org/10.1111/imj.15000
- Speer, G., Somogyi, P. (2021). Thyroid complications of SARS and coronavirus disease 2019 (COVID-19). Endocrine Journal, 68 (2), 129–136. doi: http://doi.org/10.1507/endocrj.ej20-0443
- Martins, J. R. M., Villagelin, D. G. P., Carvalho, G. A., Vaisman, F., Teixeira, P. F. S., Scheffel, R. S., Sgarbi, J. A. (2021). Management of thyroid disorders during the COVID-19 outbreak: a position statement from the Thyroid Department of the Brazilian Society of Endocrinology and Metabolism (SBEM). Archives of Endocrinology and Metabolism, 65 (3), 368–375. doi: http://doi.org/10.20945/2359-3997000000352
- Pereira, D. N., Gontijo Silveira, L. F., Moreira Guimarães, M. M., Polanczyk, C. A., Sousa Nunes, A. G., de Moura Costa, A. S. et. al. (2021). Hypothyroidism does not lead to worse prognosis in COVID-19: findings from the Brazilian COVID-19 registry. doi: http://doi.org/10.1101/2021.11.03.21265685
- Novel Coronavirus (COVID-19) and the Thyroid: Frequently Asked Questions. Available at: https://www.thyroid.org/covid-19/coronavirus-frequently-questions/
- Montesinos, M. del M., Pellizas, C. G. (2019). Thyroid Hormone Action on Innate Immunity. Frontiers in Endocrinology, 10. doi: http://doi.org/10.3389/fendo.2019.00350
- McKechnie, J. L., Blish, C. A. (2020). The Innate Immune System: Fighting on the Front Lines or Fanning the Flames of COVID-19? Cell Host & Microbe, 27 (6), 863–869. doi: http://doi.org/10.1016/j.chom.2020.05.009
- Velavan, T. P., Meyer, C. G. (2020). Mild versus severe COVID-19: Laboratory markers. International Journal of Infectious Diseases, 95, 304–307. doi: http://doi.org/10.1016/j.ijid.2020.04.061
- Abobaker, A., Raba, A. A., Alzwi, A. (2020). Extrapulmonary and atypical clinical presentations of COVID‐19. Journal of Medical Virology, 92 (11), 2458–2464. doi: http://doi.org/10.1002/jmv.26157
- Chen, M., Zhou, W., Xu, W. (2021). Thyroid Function Analysis in 50 Patients with COVID-19: A Retrospective Study. Thyroid, 31 (1), 8–11. doi: http://doi.org/10.1089/thy.2020.0363
- Gorini, F., Bianchi, F., Iervasi, G. (2020). COVID-19 and Thyroid: Progress and Prospects. International Journal of Environmental Research and Public Health, 17 (18), 6630. doi: http://doi.org/10.3390/ijerph17186630
- Lang, S., Liu, Y., Qu, X., Lu, R., Fu, W., Zhang, W. et. al. (2021). Association between Thyroid Function and Prognosis of COVID-19: A Retrospective Observational Study. Endocrine Research, 46 (4), 170–177. doi: http://doi.org/10.1080/07435800.2021.1924770
- Muller, I., Cannavaro, D., Dazzi, D., Covelli, D., Mantovani, G., Muscatello, A. et. al. (2020). SARS-CoV-2-related atypical thyroiditis. The Lancet Diabetes & Endocrinology, 8 (9), 739–741. doi: http://doi.org/10.1016/s2213-8587(20)30266-7
- Baldelli, R., Nicastri, E., Petrosillo, N., Marchioni, L., Gubbiotti, A., Sperduti, I. et. al. (2021). Thyroid dysfunction in COVID-19 patients. Journal of Endocrinological Investigation, 44 (12), 2735–2739. doi: http://doi.org/10.1007/s40618-021-01599-0
- Stasiak, M., Lewiński, A. (2021). New aspects in the pathogenesis and management of subacute thyroiditis. Reviews in Endocrine and Metabolic Disorders, 22 (4), 1027–1039. doi: http://doi.org/10.1007/s11154-021-09648-y
- Mateu-Salat, M., Urgell, E., Chico, A. (2020). SARS-COV-2 as a trigger for autoimmune disease: report of two cases of Graves' disease after COVID-19. Journal of Endocrinological Investigation, 43 (10), 1527–1528. doi: http://doi.org/10.1007/s40618-020-01366-7
- Khatri, A., Charlap, E., Kim, A. (2020). Subacute Thyroiditis from COVID-19 Infection: A Case Report and Review of Literature. European Thyroid Journal, 9 (6), 324–328. doi: http://doi.org/10.1159/000511872
- Ruggeri, R. M., Campennì, A., Siracusa, M., Frazzetto, G., Gullo, D. (2020). Subacute thyroiditis in a patient infected with SARS-COV-2: an endocrine complication linked to the COVID-19 pandemic. Hormones, 20 (1), 219–221. doi: http://doi.org/10.1007/s42000-020-00230-w
- Whiting, A., Reyes, J. V. M., Ahmad, S., Lieber, J. (2021). Post-COVID-19 Fatigue: A Case of Infectious Hypothyroidism. Cureus, 13 (5). doi: http://doi.org/10.7759/cureus.14815
- Inaba, H., Aizawa, T. (2021). Coronavirus Disease 2019 and the Thyroid – Progress and Perspectives. Frontiers in Endocrinology, 12. doi: http://doi.org/10.3389/fendo.2021.708333
- Brancatella, A., Ricci, D., Cappellani, D., Viola, N., Sgrò, D., Santini, F., Latrofa, F. (2020). Is Subacute Thyroiditis an Underestimated Manifestation of SARS-CoV-2 Infection? Insights From a Case Series. The Journal of Clinical Endocrinology & Metabolism, 105 (10), e3742–e3746. doi: http://doi.org/10.1210/clinem/dgaa537
- Brancatella, A., Ricci, D., Viola, N., Sgrò, D., Santini, F., Latrofa, F. (2020). Subacute Thyroiditis After Sars-COV-2 Infection. The Journal of Clinical Endocrinology & Metabolism, 105 (7), 2367–2370. doi: http://doi.org/10.1210/clinem/dgaa276
- Malik, J., Zaidi, S. M. J., Waqar, A. U., Khawaja, H., Malik, A., Ishaq, U. et. al. (2021). Association of hypothyroidism with acute COVID-19: a systematic review. Expert Review of Endocrinology & Metabolism, 16 (5), 251–257. doi: http://doi.org/10.1080/17446651.2021.1968830
- Liu, J., Wu, X., Lu, F., Zhao, L., Shi, L., Xu, F. (2016). Low T3 syndrome is a strong predictor of poor outcomes in patients with community-acquired pneumonia. Scientific Reports, 6 (1). doi: http://doi.org/10.1038/srep22271
- Güven, M., Gültekin, H. (2021). The prognostic impact of thyroid disorders on the clinical severity of COVID‐19: Results of single‐centre pandemic hospital. International Journal of Clinical Practice, 75 (6). doi: http://doi.org/10.1111/ijcp.14129
- Li, X., Marmar, T., Xu, Q., Tu, J., Yin, Y., Tao, Q. et. al. (2020). Predictive indicators of severe COVID-19 independent of comorbidities and advanced age: a nested case-control study. Epidemiology and Infection, 148. doi: http://doi.org/10.1017/s0950268820002502
- Fliers, E., Bianco, A. C., Langouche, L., Boelen, A. (2015). Thyroid function in critically ill patients. The Lancet Diabetes & Endocrinology, 3 (10), 816–825. doi: http://doi.org/10.1016/s2213-8587(15)00225-9
- Boelaert, K., Visser, W. E., Taylor, P. N., Moran, C., Léger, J., Persani, L. (2020). Endocrinology in the time of COVID-19: Management of hyperthyroidism and hypothyroidism. European Journal of Endocrinology, 183 (1), G33–G39. doi: http://doi.org/10.1530/eje-20-0445
- Garg, S., Dabas, A., Singh, H., Goswami, B., Kumar, K., Dubey, A. et. al. (2021). Thyroid dysfunction in COVID-19. Indian Journal of Endocrinology and Metabolism, 25 (3), 198–201. doi: http://doi.org/10.4103/ijem.ijem_195_21
- Lania, A., Sandri, M. T., Cellini, M., Mirani, M., Lavezzi, E., Mazziotti, G. (2020). Thyrotoxicosis in patients with COVID-19: the THYRCOV study. European Journal of Endocrinology, 183 (4), 381–387. doi: http://doi.org/10.1530/eje-20-0335
- Chen, W., Tian, Y., Li, Z., Zhu, J., Wei, T., Lei, J. (2021). Potential Interaction Between SARS-CoV-2 and Thyroid: A Review. Endocrinology, 162 (3). doi: http://doi.org/10.1210/endocr/bqab004
- BTA/SFE statement regarding issues specific to thyroid dysfunction during the COVID-19 pandemic (2021). Available at: https://www.british-thyroid-association.org/sandbox/bta2016/management-of-thyroid-dysfunction-during-covid-19_final.pdf
- Damara, F. A., Muchamad, G. R., Ikhsani, R., Hendro, Syafiyah, A. H., Bashari, M. H. (2021). Thyroid disease and hypothyroidism are associated with poor COVID-19 outcomes: A systematic review, meta-analysis, and meta-regression. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 15 (6), 102312. doi: http://doi.org/10.1016/j.dsx.2021.102312
- Lui, D., Lee, K. K., Lee, C. H., Lee, A., Hung, I., Tan, K. (2021). Development of Graves' Disease After SARS-CoV-2 mRNA Vaccination: A Case Report and Literature Review. Frontiers in public health, 9, 778964. doi: http://doi.org/10.3389/fpubh.2021.778964
- Bornemann, C., Woyk, K., Bouter, C. (2021). Case Report: Two Cases of Subacute Thyroiditis Following SARS-CoV-2 Vaccination. Frontiers in Medicine, 8. doi: http://doi.org/10.3389/fmed.2021.737142
- Schimmel, J., Alba, E. L., Chen, A., Russell, M., Srinath, R. (2021). Letter to the Editor: Thyroiditis and Thyrotoxicosis After the SARS-CoV-2 mRNA Vaccine. Thyroid, 31 (9), 1440–1440. doi: http://doi.org/10.1089/thy.2021.0184
- Watad, A., Sharif, K., Shoenfeld, Y. (2017). The ASIA syndrome: basic concepts. Mediterranean Journal of Rheumatology, 28 (2), 64–69. doi: http://doi.org/10.31138/mjr.28.2.64
- Stasiak, M., Lewiński, A. (2021). New aspects in the pathogenesis and management of subacute thyroiditis. Reviews in Endocrine and Metabolic Disorders, 22 (4), 1027–1039. doi: http://doi.org/10.1007/s11154-021-09648-y
- Velavan, T. P., Meyer, C. G. (2020). Mild versus severe COVID-19: Laboratory markers. International Journal of Infectious Diseases, 95, 304–307. doi: http://doi.org/10.1016/j.ijid.2020.04.061
- Vera-Lastra, O., Ordinola Navarro, A., Cruz Domiguez, M. P., Medina, G., Sánchez Valadez, T. I., Jara, L. J. (2021). Two Cases of Graves' Disease Following SARS-CoV-2 Vaccination: An Autoimmune/Inflammatory Syndrome Induced by Adjuvants. Thyroid, 31 (9), 1436–1439. doi: http://doi.org/10.1089/thy.2021.0142
- González López, J., Martín Niño, I., Arana Molina, C. (2021). Tiroiditis subaguda tras vacunación contra el SARS-CoV-2: a propósito de dos casos. Medicina Clínica. doi: http://doi.org/10.1016/j.medcli.2021.11.002
- İremli, B. G., Şendur, S. N., Ünlütürk, U. (2021). Three Cases of Subacute Thyroiditis Following SARS-CoV-2 Vaccine: Postvaccination ASIA Syndrome. The Journal of Clinical Endocrinology & Metabolism, 106 (9), 2600–2605. doi: http://doi.org/10.1210/clinem/dgab373
- Şahin Tekin, M., Şaylısoy, S., Yorulmaz, G. (2021). Subacute thyroiditis following COVID-19 vaccination in a 67-year-old male patient: a case report. Human Vaccines & Immunotherapeutics, 17 (11), 4090–4092. doi: http://doi.org/10.1080/21645515.2021.1947102
- Dutta, A., Jevalikar, G., Sharma, R., Farooqui, K. J., Mahendru, S., Dewan, A. et. al. (2021). Low FT3 is an independent marker of disease severity in patients hospitalized for COVID-19. Endocrine Connections, 10 (11), 1455–1462. doi: http://doi.org/10.1530/ec-21-0362