Zenodo.org will be unavailable for 2 hours on September 29th from 06:00-08:00 UTC. See announcement.

Preprint Open Access

Data of "Meteorological factors and non-pharmaceutical interventions explain local differences in the spread of SARS-CoV-2 in Austria"

Ledebur, Katharina; Kaleta, Michaela; Chen, Jiaying; Matzhold, Caspar; Linder, Simon D.; Weidle, Florian; Wittmann, Christoph; Habimana, Katharina; Kerschbaumer, Linda; Stumpfl, Sophie; Heiler, Georg; Bicher, Martin; Popper, Nikolaus; Bachner, Florian; Klimek, Peter

A data-driven modelling approach based on an age-structured model that compares 116 Austrian regions to a suitably chosen control set of regions to explain variations in local transmission rates through a combination of meteorological factors, non-pharamaceutical interventions and mobility.

Repository contains input data time series of metereological factors, regional measures and mobility used to calculate the effect sizes of these variable groups. 

Files (16.6 MB)
Name Size
cloud_mean_Bezirk.csv
md5:4ce3fbb125ce0e417f6552ae0cdc4d81
3.1 MB Download
Edited_Massnahmen.csv
md5:00e09e7eb65e5e2a6761ff7571a6e54b
155.1 kB Download
humid_mean_Bezirk.csv
md5:71ff1d812e332bcae529f02915a6343c
3.6 MB Download
prec_mean_Bezirk.csv
md5:c312391449bacfa220a4b22f1bf8910e
2.5 MB Download
rg_Bezirk.mat
md5:799df20e71847663f5eee76503b00e1b
410.4 kB Download
temp_mean_Bezirk.csv
md5:b443ac53729578a510b062e14c39bcb0
3.5 MB Download
wind_mean_Bezirk.csv
md5:0d4ff70285da233f131a98cd764dd642
3.5 MB Download
75
60
views
downloads
All versions This version
Views 7575
Downloads 6060
Data volume 79.9 MB79.9 MB
Unique views 5959
Unique downloads 3232

Share

Cite as