Published July 11, 2021 | Version v 0.1.0
Journal article Open

Exploiting node metadata to predict interactions in large networks using graph embedding and neural networks

  • 1. Centre for Integrative Ecology, University of Canterbury

Description

This repository contains the files and codes to reproduce results from the manuscript (https://doi.org/10.1101/2021.06.10.447991). In the paper we used a Random Dot Product Graph Framework where we exploit node metadata to predict interactions in a bipartite network. 

All codes are also available on the following GitHub repository: https://github.com/officinadata/rdpg_ml_metadata

Files

README.md

Files (28.4 kB)

Name Size Download all
md5:08a068fa999b61c93201017761d5ff47
4.6 kB Download
md5:8a06b66a0e51b9360f5068ee20b0829f
967 Bytes Download
md5:05f0629d8465498bc6b5dd3f8933c11d
3.1 kB Download
md5:e42d3e5f2e6e3fb3745f0ebe32541e5b
5.3 kB Download
md5:22f1b9cf1797f6a35e5f1adb20969b44
2.2 kB Download
md5:0976c7ab2ba1f3faf2a3913c80019bad
2.2 kB Download
md5:db31d153fc9bf188643b6f6f893e50c1
302 Bytes Download
md5:267c9abb2ae46d0669ed0044fe03cdff
1.9 kB Download
md5:81b212d82dcdd478d5cbe1ae32a8760a
4.8 kB Download
md5:ad31dd9fb7dacf9a3e17c85b70f311ac
2.9 kB Preview Download
md5:07c9cfaf61f0b58095da5e1a445d0bd0
24 Bytes Preview Download