Published September 22, 2022 | Version v1
Dataset Open

Complex genetic patterns and distribution limits mediated by native congeners of the worldwide invasive red‐eared slider turtle

  • 1. National Autonomous University of Mexico
  • 2. Mathematics Research Center
  • 3. Clemson University
  • 4. Institut de Biologie de l'École Normale Supérieure
  • 5. Rutgers, The State University of New Jersey
  • 6. American Museum of Natural History

Description

Non-native (invasive) species offer a unique opportunity to study the geographic distribution and range limits of species, wherein the evolutionary change driven by interspecific interactions between native and non-native closely related species is a key component. The red-eared slider turtle, Trachemys scripta elegans (TSE), has been introduced and successfully established worldwide. It can coexist with its native congeners T. cataspila, T. venusta and T. taylori in Mexico. We performed comprehensive fieldwork, executed a battery of genetic analyses and applied a novel species distribution modeling approach to evaluate their historical lineage relationships and contemporary population genetic patterns. Our findings support the historical common ancestry between native TSE and non-native (TSEalien), while also highlighting the genetic differentiation of the exotic lineage. Genetic patterns are associated with their range size/endemism gradient, the microendemic T. taylori showed significant reduced genetic diversity and high differentiation, whereas TSEalien showed the highest diversity and signals of population size expansion. Counter to our expectations, lower naturally occurring distribution overlap and little admixture patterns were found between TSE and its congeners, exhibiting reduced gene flow and clear genetic separation across neighboring species despite having zones of contact. We demonstrate that these native Trachemys species have distinct climatic niche suitability, likely preventing establishment of and displacement by the TSEalien. Moreover, we found major niche overlap between TSEalien and native species worldwide, supporting our prediction that sites with closer ecological optima to the invasive species have higher establishment risk than those that are closer to the niche-center of the native species.

Notes

The final GBS data file has an average number of loci/sample = 55,982, coverage = 16x, and 63,385 SNPs.

Funding provided by: Consejo Nacional de Ciencia y Tecnología
Crossref Funder Registry ID: http://dx.doi.org/10.13039/501100003141
Award Number: CONACyT grant #237228

Funding provided by: Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México
Crossref Funder Registry ID: http://dx.doi.org/10.13039/501100006087
Award Number: DGAPA/PASPA 20160609

Files

README.txt

Files (92.3 MB)

Name Size Download all
md5:49bb4aceda4eb3fddc65b7d11246b44c
356 Bytes Preview Download
md5:50cd0d94cb0f26807d601783c18c1a35
29.2 kB Preview Download
md5:e0196526767ec579a50c77c6c3cf80ee
92.3 MB Preview Download

Additional details

Related works

Is cited by
10.1111/mec.16356 (DOI)