There is a newer version of the record available.

Published January 30, 2022 | Version 1.2.0
Dataset Open

An Audibility Model of the Bone Conduction Device during Headband Trial in Single-sided Deaf Subjects.

  • 1. Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Utrecht, Utrecht, The Netherlands

Description

Data and Code of the study

Abstract

Objective
We analysed the head-shadow-effect compensation in single-sided deafened (SSD) subjects fitted during the headband trial with a bone conduction device (BCD).

Design
In this retrospective study, we modelled audibility outcomes. The saved device settings of the participants were loaded on the BCD and used for measurements of the output force level on the skull simulator.
The sensation levels of the Bone-Conduction and Air-Conduction sound paths were compared, modelling three spatial conditions with speech in quiet. Full head-shadow-effect compensation occurred when the difference between sensation levels was equivalent of greater than 0.
We calculated the phoneme-score using the Speech Intelligibility Index for those conditions in quiet and, additionally, for seven conditions with speech and noise from different directions.

Study sample
Data from eighty-five SSD adults fitted with a BCD during the headband trial period. The subjects participated in a Randomized Control Trial.

Results
Most subjects did not reach a full head-shadow-effect compensation with the signal at the BCD-side and in front. The modelled outcomes of speech understanding in quiet did not improve with the transcutaneous BCD compared to the unaided condition. Regarding the speech understanding in noise, we found a slight improvement in some specific conditions and minimal worsening in others.

Conclusions
Based on an audibility model, this study challenges the fundamentals of a trial period with a transcutaneous BCD in subjects with SSD.

Notes

Related to: Peters, J. P., van Zon, A., Smit, A. L., van Zanten, G. A., de Wit, G. A., Stegeman, I., & Grolman, W. (2015). CINGLE-trial: cochlear implantation for siNGLE-sided deafness, a randomised controlled trial and economic evaluation. BMC Ear, Nose and Throat Disorders, 15(1), 3. https://doi.org/10.1186/s12901-015-0016-y

Files

Audibility_BCD_headband_in_SSD_v121.zip

Files (50.0 MB)

Name Size Download all
md5:8b09c6e1283f2db7ac30865af671f455
50.0 MB Preview Download

Additional details

Related works

References

  • Bentler, R. A., Pavlovic, C. V, & others. (1989). Transfer functions and correction factors used in hearing aid evaluation and research. Ear Hear, 10(1), 58–63.
  • Bosman, A. J., Kruyt, I. J., Mylanus, E. A. M., Hol, M. K. S., & Snik, A. F. M. (2018). On the evaluation of a superpower sound processor for bone-anchored hearing. Clinical Otolaryngology, 43(2), 450–455. https://doi.org/10.1111/coa.12989
  • Bosman, A.J. and G.F. Smoorenburg. (1992). Word lists for speech audiometry. [CD-ROM]. Dutch Association of Audiology (NVA).
  • Bosman, A. J., & Smoorenburg, G. F. (1995). Intelligibility of Dutch CVC syllables and sentences for listeners with normal hearing and with three types of hearing impairment. Audiology : Official Organ of the International Society of Audiology, 34(5), 260–284. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8837785
  • Carhart, R., & Jerger, J. F. (1959). Preferred Method For Clinical Determination Of Pure-Tone Thresholds. Journal of Speech and Hearing Disorders, 24(4), 330. https://doi.org/10.1044/jshd.2404.330
  • Carlsson, P., Håkansson, B., & Ringdahl, A. (1995). Force threshold for hearing by direct bone conduction. The Journal of the Acoustical Society of America, 97(2), 1124–1129. https://doi.org/10.1121/1.412225
  • Dillon, H. (2012). Hearing aids. Sydney : New York: Boomerang Press ; Thieme.
  • Faber, H. T., de Wolf, M. J. F., de Rooy, J. W. J., Hol, M. K. S., Cremers, C. W. R. J., & Mylanus, E. A. M. (2009). Bone-Anchored Hearing Aid Implant Location in Relation to Skin Reactions. Archives of Otolaryngology-Head & Neck Surgery, 135(8), 742. https://doi.org/10.1001/archoto.2009.99
  • Flynn, M. C., & Hillbratt, M. (2012). Improving the Accuracy of Baha® Fittings through Measures of Direct Bone Conduction. Clinical and Experimental Otorhinolaryngology, 5(Suppl 1), S43. https://doi.org/10.3342/ceo.2012.5.S1.S43
  • Gründer, I., Seidl, R. O., Ernst, A., & Todt, I. (2008). Wertigkeit der BAHA-Testung für das postoperative Hörergebnis. HNO, 56(10), 1020–1024. https://doi.org/10.1007/s00106-007-1608-7
  • Hol, M. K. S., Kunst, S. J. W., Snik, A. F. M., & Cremers, C. W. R. J. (2010). Pilot study on the effectiveness of the conventional CROS, the transcranial CROS and the BAHA transcranial CROS in adults with unilateral inner ear deafness. European Archives of Oto-Rhino-Laryngology, 267(6), 889–896. https://doi.org/10.1007/s00405-009-1147-9
  • Holube, I., Fredelake, S., Vlaming, M., & Kollmeier, B. (2010) Development and analysis of an International Speech Test Signal (ISTS). International Journal of Audiology, 49:12, 891-903. https://doi.org/10.3109/14992027.2010.506889
  • Kitterick, P. T., Smith, S. N., & Lucas, L. (2016). Hearing Instruments for Unilateral Severe-to-Profound Sensorineural Hearing Loss in Adults. Ear and Hearing, 37(5), 495–507. https://doi.org/10.1097/AUD.0000000000000313
  • Kompis, M., Pfiffner, F., Krebs, M., & Caversaccio, M.-D. (2011). Factors influencing the decision for Baha in unilateral deafness: the Bern benefit in single-sided deafness questionnaire. Advances in Oto-Rhino-Laryngology, 71, 103–111. https://doi.org/10.1159/000323591
  • Kurz, A., Flynn, M., Caversaccio, M., & Kompis, M. (2014). Speech Understanding with a New Implant Technology: A Comparative Study with a New Nonskin Penetrating Baha System. BioMed Research International, 2014, 1–9. https://doi.org/10.1155/2014/416205
  • Lucas, L., Katiri, R., & Kitterick, P. T. (2018). The psychological and social consequences of single-sided deafness in adulthood. International Journal of Audiology, 57(1), 21–30. https://doi.org/10.1080/14992027.2017.1398420
  • Mattingly, J. K., Greene, N. T., Jenkins, H. A., Tollin, D. J., Easter, J. R., & Cass, S. P. (2015). Effects of Skin Thickness on Cochlear Input Signal Using Transcutaneous Bone Conduction Implants. Otology & Neurotology, 36(8), 1403–1411. https://doi.org/10.1097/MAO.0000000000000814
  • Monini, S., Musy, I., Filippi, C., Atturo, F., & Barbara, M. (2015). Bone conductive implants in single-sided deafness. Acta Oto-Laryngologica, 135(4), 381–388. https://doi.org/10.3109/00016489.2014.990057
  • Pennings, R. J. E., Gulliver, M., & Morris, D. P. (2011). The importance of an extended preoperative trial of BAHA in unilateral sensorineural hearing loss: a prospective cohort study. Clinical Otolaryngology : Official Journal of ENT-UK ; Official Journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery, 36(5), 442–449. https://doi.org/10.1111/j.1749-4486.2011.02388.x
  • Peters, J. P., van Zon, A., Smit, A. L., van Zanten, G. A., de Wit, G. A., Stegeman, I., & Grolman, W. (2015). CINGLE-trial: cochlear implantation for siNGLE-sided deafness, a randomised controlled trial and economic evaluation. BMC Ear, Nose and Throat Disorders, 15(1), 3. https://doi.org/10.1186/s12901-015-0016-y
  • Peters, J. P. M., van Heteren, J. A. A., Wendrich, A. W., van Zanten, G. A., Grolman, W., Stokroos, R. J., & Smit, A. L. (2020). Short-term Outcomes of Cochlear Implantation for Single-Sided Deafness compared to Bone Conduction Devices and Contralateral Routing of Sound hearing aids – Results of a Randomised Controlled Trial (CINGLE-trial). Manuscript submitted for publication. https://dspace.library.uu.nl/handle/1874/400352
  • Pfiffner, F., Kompis, M., Flynn, M., Asnes, K., Arnold, A., & Stieger, C. (2011). Benefits of low-frequency attenuation of baha® in single-sided sensorineural deafness. Ear and Hearing, 32(1), 40–45. https://doi.org/10.1097/AUD.0b013e3181ecd002
  • Snapp, H. A., Fabry, D. A., Telischi, F. F., Arheart, K. L., & Angeli, S. I. (2010). A clinical protocol for predicting outcomes with an implantable prosthetic device (baha) in patients with single-sided deafness. Journal of the American Academy of Audiology, 21(10), 654–662. https://doi.org/10.3766/jaaa.21.10.5
  • Snapp, H., Angeli, S., Telischi, F. F., & Fabry, D. (2012). Postoperative Validation of Bone-Anchored Implants in the Single-Sided Deafness Population. Otology & Neurotology, 34(4), 777–778. https://doi.org/10.1097/MAO.0b013e31828bb1cc
  • Snapp, H. A., Morgenstein, K. E., & Kuzbyt, B. (2019). Speech Perception Outcomes in Transcutaneous Versus Percutaneous Bone Conduction Stimulation in Individuals With Single-sided Deafness. Otology & Neurotology, 40(8), 1068-1075. https://doi.org /10.1097/MAO.0000000000002362
  • Snik, F. M., Mylanus, E. a M., Proops, D. W., Wolfaardt, J. F., Hodgetts, W. E., Somers, T., … Tjellström, A. (2005). Consensus Statements on the BAHA System: Where Do We Stand at Present? Annals of Otology, Rhinology & Laryngology, 114(12_suppl), 2–12. https://doi.org/10.1177/0003489405114S1201
  • Stenfelt, S. (2005). Bilateral fitting of BAHAs and BAHA® fitted in unilateral deaf persons: Acoustical aspects. International Journal of Audiology, 44(3), 178–189. https://doi.org/10.1080/14992020500031561
  • Stenfelt, S. (2012). Transcranial attenuation of bone-conducted sound when stimulation is at the mastoid and at the bone conduction hearing aid position. Otology & Neurotology : Official Publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology, 33(2), 105–114. https://doi.org/10.1097/MAO.0b013e31823e28ab
  • Verstraeten, N., Zarowski, A. J., Somers, T., Riff, D., & Offeciers, E. F. (2009). Comparison of the Audiologic Results Obtained With the Bone-Anchored Hearing Aid Attached to the Headband, the Testband, and to the "Snap" Abutment. Otology & Neurotology, 30(1), 70–75. https://doi.org/10.1097/MAO.0b013e31818be97a
  • Wendrich, A. W., Kroese, T. E., Peters, J. P. M., Cattani, G., & Grolman, W. (2017). Systematic Review on the Trial Period for Bone Conduction Devices in Single-Sided Deafness: Rates and Reasons for Rejection. Otology & Neurotology : Official Publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology, 38(5), 632–641. https://doi.org/10.1097/MAO.0000000000001405
  • Zwartenkot, J. W., Snik, A. F. M., Mylanus, E. A. M., & Mulder, J. J. S. (2014). Amplification Options for Patients With Mixed Hearing Loss. Otology & Neurotology, 35(2), 221–226. https://doi.org/10.1097/MAO.0000000000000258
  • American National Standards Institute. (1997). Methods For Calculation Of The Speech Intelligibility Index (ANSI/ASA Standard No. 3.5).
  • International Organization for Standardization. (1998). Acoustics — Reference zero for the calibration of audiometric equipment — Part 1: Reference equivalent threshold sound pressure levels for pure tones and supra-aural earphones (ISO Standard No. 389-1).