Published December 15, 2021 | Version v2
Book chapter Open

Biocatálisis y biotransformaciones I (2000-2012): Una alternativa eco-sustentable en química fina en Ecuador / Bio catalysis and biotransformation I (2000-2012): An eco-sustainable alternative in fine chemistry in Ecuador

  • 1. Universidad Técnica de Esmeraldas "Luis Vargas Torres"
  • 1. ManglarEditores

Description

Resumen

En este estudio se desarrolló una búsqueda bibliográfica básica que abarca unos 15 años, desde el 2000 hasta 2015 sobre algunos aspectos conceptuales y metodológicos relacionados con procesos de biocatálisis y biotransformaciones, desde la perspectiva de química eco-sustentable o química verde. Se consideran los principios básicos de la química sustentable y su aplicabilidad en el campo de la quimio-catálisis, biocatálisis y de implementación de sistemas biocatalíticos (enzimas, células completas, sistemas soportados), así como ventajas y desventajas de la utilización de los diversos sistemas biocatalíticos en la química fina. Se destacan conceptos fundamentales y algunas aplicaciones, hoy clásicas y con relevante significación conceptual y metodológica de las biotransformaciones, incluyendo una visión estructural-funcional de mínimo impacto ambiental. Se analiza la aplicabilidad de la biocatálisis en la química fina y otros procesos tecnológicos tales como desulfurización, biooxidación avanzada, etc., y en el desarrollo de estrategias para el fortalecimiento de esta línea de investigación, en Biotransformaciones, a escala nacional y en laboratorios universitarios.

Abstract

In this study, a basic bibliographic search was developed that covers about 15 years, from 2000 to 2015 on some conceptual and methodological aspects related to bio catalysis and biotransformation processes, from the perspective of eco-sustainable chemistry or green chemistry. The basic principles of sustainable chemistry and their applicability in the field of chemo-catalysis, bio catalysis and the implementation of biocatalytic systems (enzymes, whole cells, supported systems) are considered, as well as advantages and disadvantages of the use of the various systems. biocatalysts in fine chemistry. Fundamental concepts and some applications, now classic and with relevant conceptual and methodological significance, of biotransformation are highlighted, including a structural-functional vision of minimal environmental impact. The applicability of bio catalysis in fine chemistry and other technological processes such as desulfurization, advanced bio-oxidation, etc., and in the development of strategies to strengthen this line of research, in Biotransformation, on a national scale and in university laboratories is analyzed.

Files

CAP 3 UEPLC 2021 .pdf

Files (684.8 kB)

Name Size Download all
md5:a6fc5f732222d0b003e7364d0d951239
684.8 kB Preview Download

Additional details

Related works

Is cited by
Book chapter: 10.5281/zenodo.5866647 (DOI)
Book: 978-9978-11-052-2 (ISBN)
Book: 2631-2689 (ISSN)

References

  • Aranda, G., Moreno, L., Cortes, M., Prange, T., Maurs, M., & Azerad, R. (2001). A new example of 1a-hydroxylation of drimanic terpenes through combined microbial and chemical processes. Tetrahedron, (57), 6051-6056.
  • Arroyo, M., Acebal, C., y De-la-Mata, I. (2014). Biocatálisis y biotecnología. Arbor, 190(768), a156. https://doi.org/hb6d
  • Baldessari, A., & Mangone, C. P. (2001). One-pot biocatalyzed preparation of substituted amides as intermediates of pharmaceuticals. Journal of Molecular Catalysis - B Enzymatic, 11(4-6), 335-341. https://doi.org/fk8zpc
  • Baldessari, A., Bruttomesso, A. C., & Gros, E. G. (1996, June 26). Lipase-Catalysed Regioselective Deacetylation of androstane derivatives. Helvetica Chimica Acta, 79(4), 999-1004. https://doi.org/bkxh5q
  • Baldessari, A., Maier, M. S., & Gros, E. G. (1995). Enzymatic deacetylation of steroids bearing labile functions. Tetrahedron Letters, 36(25), 4349-4352. https://doi.org/fvvbtp
  • Brena, B., González-Pombo, P., & Batista-Viera, F. (2013). Immobilization of enzymes: a literature survey. Methods in molecular biology (Clifton, N.J.), 1051, 15–31. https://doi.org/f5ck6h
  • Cagnon, J. R., Porto, A. L., Marsaioli, A. J., Manfio, G. P., & Eguchi, S. Y. (1999). First evaluation of the Brazilian microorganisms biocatalytic potential. Chemosphere, 38(10), 2237–2242. https://doi.org/bj8crp
  • Castellanos, O., Ramírez, D., y Montañez, V. (2006, mayo/agosto). Perspectiva en el desarrollo de las enzimas industriales a partir de la inteligencia tecnológica. Ingeniería e Investigación, 26(2), 52-67. https://bit.ly/3qO5aSc
  • De-Conti, R., Porto, A., Augusto, J., Rodrigues, R., Moran, P., Manfio, G., & Marsaioli, A. (2001, January 22). Microbial reduction of cyclohexanones. Journal of Molecular Catalysis B: Enzymatic, 11(4-6), 233-236. https://doi.org/dk552p
  • De-Lima, C., Da-Silva, P., Nascimento, M., & Rezende, M. (1996). The use of immobilized lipases on chrysotile for esterification reactions. Journal of the Brazilian Chemical Society, 7(3), 173-175. https://bit.ly/3t6eHH0
  • Enviromental Protection Agency. (1999). Green Chemistry: Frontiers in Benign Chemical Synthesis & Processes (P. Anastas & T. Williamson, Eds). Oxford University Press.
  • Faber, K. (2004). Biocatalytic Applications. Biotransformations in organic chemistry (pp. 29-176). Springer.
  • Fernandez-Llorente, G., Fernandez-Lafuente, R., Palomo, J. M., Mateo, C., Bastida, A., Coca, J., Haramboure, T., Hernández-Justiz, O., Terreni, M., & Guisan, J. M. (2001, Januray 22). Biocatalyst engineering exerts a dramatic effect on selectivity of hydrolysis catalyzed by immobilized lipases in aqueous medium. Journal of Molecular Catalysis B: Enzymatic, 11(4-6), 649-656. https://doi.org/c4nhhx
  • Gamenara, D., Seoane, G., Saenz, P., & Domínguez, P. (2013). Redox Biocatalysis. Fundamentals and Applications. Wiley.
  • García-Garibay, M, López-Munguía, A., & Barzana, E. (2000, October 24). Effect of β-galactosidase hydration on alcoholysis reaction in organic one-phase liquid systems. Biotechnology and Bioengineering, 70(6), 647-653. https://doi.org/frp672
  • Gavrilescu, M., & Chisti, Y. (2005). Biotechnology-a sustainable alternative for chemical industry. Biotechnology advances, 23(7-8), 471–499. https://doi.org/bbp6zg
  • Gonzalez, D., Schapiro, V., Seoane, G., & Hudlicky, T. (1997). New metabolites from toluene dioxygenase dihydroxylation of oxygenated biphenyls. Tetrahedron: Asymmetry, 8(7), 975-977. https://bit.ly/3q48j0Q
  • Hudlicky, T., D. Gonzalez, & D. T. Gibson. (1999). Enzymatic dihydroxylation of aromatics in enantioselective synthesis: Expanding asymmetric methodology. Thetrahedron Letter, 32(2), 35-62. EPA Number: R826113
  • Klibanov A. M. (1983). Immobilized enzymes and cells as practical catalysts. Science (New York, N.Y.), 219(4585), 722–727. https://doi.org/c67n2p
  • Lancaster, M. (2016, August 6). Green Chemistry: And Introductory Text (3rd ed.). Royal Society of Chemistry. (Original work published 2002).
  • Leise, A., Seelbach, K., & Wandrey, C. (Eds). (2006, March). Industrial Biotransformations (2nd ed.). Wiley,
  • Limberger, R. P., Ferreira, L., Castilhos, T., Aleixo, A. M., Petersen, R. Z., Germani, J. C., Zuanazzi, J. A., Fett-Neto, A. G., & Henriques, A. T. (2003). The ability of Bipolaris sorokiniana to modify geraniol and (-)-alpha-bisabolol as exogenous substrates. Applied microbiology and biotechnology, 61(5-6), 552–555. https://doi.org/b7dd9c
  • Luna, H. (2004). Aplicación de la biocatálisis a la preparación de intermediarios para la síntesis de fármacos. Journal of the Mexican Chemical Society, 48(3), 211-219. https://bit.ly/3HFK1QW
  • Magasanik, B., & chargaff, E. (1948). The structure of a new cyclohexose produced from d-inositol by biological oxidation. The Journal of Biological Chemistry, 175(2), 929-937. https://bit.ly/3f0G5y2
  • Mancera, O., Zaffaroni, A., Rubin, B., Sondheimer, F., Rosenkranz G., & Djerassi, C. (1952, July 20). Steroids. XXXVII. A ten step conversion of progesterone to cortisone. Journal of the American Chemical Society, 74(14), 3711-3712.
  • Martinelle, M., Holmquist, M., & Hult, K. (1995). On the interfacial activation of Candida antarctica lipase A and B as compared with Humicola lanuginosa lipase. Biochimica et biophysica acta, 1258(3), 272–276. https://doi.org/czwnw9
  • Menéndez, P., García C., Rodríguez, P., Moyna, P., & Heinzen, H. (2002, June). Enzymatic systems involved in D-limonene biooxidation. Brazilian Archives of Biology and Technology, 45(2), 111-114. https://bit.ly/3q096js
  • Monsalve, L. (2009). Biocatálisis aplicada a reacciones de esteroides, terpenos y dicetonas y a la síntesis de poliamidoaminas lineales (Tesis doctoral, Universidad de Buenos Aires, Argentina). https://bit.ly/3q3QcZg
  • Monteiro, J. B., Nascimento, M. G., & Ninow, J. L. (2003). Lipase-catalyzed synthesis of monoacylglycerol in a homogeneous system. Biotechnology letters, 25(8), 641–644. https://doi.org/dvnjfw
  • Navarro-Ocaña, A., Olguín, L., Luna, H., Jiménez-Estrada, M., & Bárzana, E. (2001). Reductive cyclization with baker's yeast of 4-alkyl-2-nitro-acetanilides to 6-alkylbenzimidazoles and 1-hydroxy-2-methyl-6-alkylbenzimidazoles [Abstract]. Journal of the Chemical Society, Perkin Transactions 1, (21), 2754-2756. https://rsc.li/3f0gANi
  • Neuberg, C., & Lewite, A. (1918). XIV. Hydrogenation of a ketone by yeast. Transformation of methylheptenone into methylheptenol. Biochem. Z., 91, 257-266.
  • Ogawa, J., & Shimizu, S. (1999). Microbial enzymes: new industrial applications from traditional screening methods. Trends in biotechnology, 17(1), 13–21. https://doi.org/bd6c3t
  • Ovsejevi, K., Grazu, V., & Batista-Viera, D. (1998). β-Galactosidase from Kluyveromyces lactis immobilized on to thiosulfinate/thiosulfonate supports for lactose hydrolysis in milk and dairy by-products. Biotechnology Techniques, 12, 143-148.
  • Patel, R. (2001). Enzymatic preparations of chiral pharmaceutical intermediates by lipases. Journal. Liposome Research, (11), 355-393.
  • Pessagno, R., & Baldessari, A. (2000). Lipase-Catalyzed Polymerization of Glycerol and Dicarboxylic Acids in an Organic Medium. Molecules, 5(12), 372–373. MDPI AG. https://doi.org/bz44mc
  • Peterson, D., & Murray, H. (1952, April 5). Microbiological oxygenation of steroids at carbon 11. Journal of the American Chemical Society, 74(7), 1871-1872. https://doi.org/bc4kzb
  • Pilli, R., & Riatto, V. (1998, December). A Chemoenzymatic Synthesis of the Sex Pheromone of Lasioderma serricorne F. Journal of Brazilian Chemical Society, 9(6), 571-576. https://bit.ly/3eWprzh
  • Porto, A., Cassiola, F., Dias, S., Joekes, I., Gushikem, Y., Rodrigues, J., Moran, P., Manfio, G., & Marsaioli, A. (2002). Aspergillus terreus CCT 3320 immobilized on chrysotile or cellulose/TiO2 for sulfide oxidation. Journal of Molecular Catalysis B: Enzymatic, 19-20, 327-334. https://bit.ly/32OeJJ3
  • Ramírez, N., Serrano, J., & Sandoval, H. (2006). Microorganismos extremófilos. Actinomicetos halófilos en México. Revista Mexicana de Ciencias Farmacéuticas, 37(3), 56-71. https://bit.ly/3F2vn4B
  • Roberts, S., Davies, H., Green, R., Kelly, D., (1992). Biotransformations in preparative organic chemistry. The use of isolated enzymes and whole cell systems in synthesis. Academic Press.
  • Rodríguez, S., Kayser, M. M., & Stewart, J. D. (2001). Highly stereoselective reagents for beta-keto ester reductions by genetic engineering of baker's yeast. Journal of the American Chemical Society, 123(8), 1547–1555. https://doi.org/df5qjv
  • Rogert, M., Trelles, J., Porro, S., Lewkowicz, E., & Iribarren, A., (2002). Microbial Synthesis of Antiviral Nucleosides Using Escherichia coli BL21 as Biocatalyst. Biocatalysis and Biotransformation, 20(5), 347-351. https://doi.org/dsvx77
  • Santos, A., Pereira, N., Da Silva, I., Sarquis, M., & Antunes, O. (2003). Microbiologic Oxidation of Isosafrole into Piperonal [Abstract]. Biotechnology for Fuels and Chemicals, 105, 649-657. https://bit.ly/3eWnRxt
  • Schapiro, V., Cavalli, G., Seoane, G., Faccio, R., & Mombru, A. (2002, November 13). Chemoenzymatic synthesis of chiral enones from aromatic compounds. Tetrahedron: Asymmetry, 13(22), 2453-2459. https://doi.org/c7vmfx
  • Schmid, A., Dordick, J. S., Hauer, B., Kiener, A., Wubbolts, M., & Witholt, B. (2001). Industrial biocatalysis today and tomorrow. Nature, 409(6817), 258–268. https://doi.org/bqxgv7
  • Seeger, M., González, M., Cámara, B., Muñoz, L., Ponce, E., Mejías, L., Mascayano, C., Vásquez, Y., & Sepúlveda-Boza, S. (2003). Biotransformation of natural and synthetic isoflavonoids by two recombinant microbial enzymes. Applied and environmental microbiology, 69(9), 5045–5050. https://doi.org/djgk32
  • Sierra, A., Meléndez, L., Ramírez-Monroy, A., y Arroyo, M. (2014, julio/diciembre). La química verde y el desarrollo sustentable RIDE Revista Iberoamericana para la Investigación y el Desarrollo Educativo, 5(9), 1-15. https://bit.ly/3pZNKmr
  • Solis, A., Luna, H., Perez, H., Manjarrez, N., Sánchez, R., Albores-Velasco, M., & Castillo, R. (1998). New sources of (R)-oxynitrilase: capulin (Prunnus capuli) and mamey (Mammea americana). Biotechnology Letters, 20(12), 1183-1185.
  • Souza, E., & Nogueira, J. (2003). Stereoselective acylations of 1,2-azidoalcohols with vinyl acetate catalyzed by lipase Amano PS. Tetrahedron: Asymmetry, 14(10), 1255-1259. https://bit.ly/3eXH163
  • Straathof, A. J., Panke, S., & Schmid, A. (2002). The production of fine chemicals by biotransformations. Current opinion in biotechnology, 13(6), 548–556. https://doi.org/dsk9mv
  • Tapia, A. A., Vallejo, M. D., Gouiric, S. C., Feresin, G. E., Rossomando, P. C., & Bustos, D. A. (1997). Hydroxylation of dehydroabietic acid by Fusarium species. Phytochemistry, 46(1), 131–133. https://doi.org/djhjmj
  • Trelles, J., Fernández, M., Lewkowicz, E., Iribarren, A., & Sinisterra, J. (2003, March). Purine nucleoside synthesis from uridine using immobilized Enterobacter gergoviae CECT 875 whole cells. Tetrahedron Letter, 44(12), 2605-2609. https://doi.org/cg36b7
  • Velasco, R., Montenegro, D., Vélez, J., García, C., & Durango, D. (2009, enero/marzo). Biotransformación de compuestos aromáticos sustituidos mediante hongos filamentosos fitopatógenos de los géneros Botryodiplodia y Colletotrichum. Revista de la Sociedad Química del Perú, 75(1), 94-111. https://bit.ly/3zxf6DF
  • Vidal, M., Becerra, J., Mondaca, M. A., & Silva, M. (2001). Selection of Mycobacterium sp. strains with capacity to biotransform high concentrations of beta-sitosterol. Applied microbiology and biotechnology, 57(3), 385–389. https://doi.org/fmrjkz
  • Vieira, H. S., Takahashi, J. A., & Boaventura, M. A. (2002). Novel derivatives of ent-17,19-dihydroxy-16betaH-kaurane obtained by biotransformation with Verticillium lecanii. Journal of agricultural and food chemistry, 50(13), 3704–3707. https://doi.org/d5thpr
  • Zaks, A., & Klibanov, A. M. (1984). Enzymatic catalysis in organic media at 100 degrees C. Science (New York, N.Y.), 224(4654), 1249–1251. https://doi.org/cxrp4t
  • Zaks, A., & Klibanov, A. M. (1985). Enzyme-catalyzed processes in organic solvents. Proceedings of the National Academy of Sciences of the United States of America, 82(10), 3192–3196. https://doi.org/ftq4dc