Published January 12, 2022 | Version 1
Journal article Open

Testing a computational model of causative overgeneralizations: Child judgment and production data from English, Hebrew, Hindi, Japanese and K'iche'

  • 1. ESRC International Centre for Language and Communicative Development (LuCiD), Liverpool, UK
  • 2. University of Liverpool, Liverpool, UK
  • 3. Kobe University, Kobe, Japan
  • 4. Hebrew University of Jerusalem, Jerusalem, Israel
  • 5. Universidad del Valle de Guatemala, Guatemala City, Guatemala
  • 6. University of Salford, Salford, UK
  • 7. University of Kansas, Lawrence, Kansas, USA
  • 8. University of Colorado, Boulder, Boulder, Colorado, USA
  • 9. University of Calgary, Calgary, Canada
  • 10. University of Iowa, Iowa City, Iowa, USA
  • 11. Tel Aviv University, Tel Aviv, Israel
  • 12. Indian Institute of Information Technology, Hyderabad, India
  • 13. Indian Institute of Technology, Delhi, India
  • 14. University of Stirling, Stirling, UK

Description

How do language learners avoid the production of verb argument structure overgeneralization errors ( *The clown laughed the man c.f. The clown made the man laugh), while retaining the ability to apply such generalizations productively when appropriate? This question has long been seen as one that is both particularly central to acquisition research and particularly challenging. Focussing on causative overgeneralization errors of this type, a previous study reported a computational model that learns, on the basis of corpus data and human-derived verb-semantic-feature ratings, to predict adults' by-verb preferences for less- versus more-transparent causative forms (e.g., * The clown laughed the man vs The clown made the man laugh) across English, Hebrew, Hindi, Japanese and K'iche Mayan. Here, we tested the ability of this model (and an expanded version with multiple hidden layers) to explain binary grammaticality judgment data from children aged 4;0-5;0, and elicited-production data from children aged 4;0-5;0 and 5;6-6;6 ( N=48 per language). In general, the model successfully simulated both children's judgment and production data, with correlations of r=0.5-0.6 and r=0.75-0.85, respectively, and also generalized to unseen verbs. Importantly, learners of all five languages showed some evidence of making the types of overgeneralization errors – in both judgments and production – previously observed in naturalistic studies of English (e.g., *I'm dancing it). Together with previous findings, the present study demonstrates that a simple learning model can explain (a) adults' continuous judgment data, (b) children's binary judgment data and (c) children's production data (with no training of these datasets), and therefore constitutes a plausible mechanistic account of the acquisition of verbs' argument structure restrictions.

Files

openreseurope-1-15546.pdf

Files (65.3 MB)

Name Size Download all
md5:d8ee4bf75ba024f725729f6818f47b51
65.3 MB Preview Download

Additional details

References

  • Aiello S, Eckstrand E, Fu A (2018). Machine Learning with R and H2O.
  • Alishahi A, Stevenson S (2008). A computational model of early argument structure acquisition. Cogn Sci. doi:10.1080/03640210801929287
  • Ambridge B (2013). How do children restrict their linguistic generalizations? an (un-)grammaticality judgment study. Cogn Sci. doi:10.1111/cogs.12018
  • Ambridge B (2019). Argument Structure Overgeneralizations.docx. figshare. doi:10.6084/m9.figshare.8108906.v1
  • Ambridge B (2021). Fork of CLASS: Cross Linguistic Acquisition of Sentence Structure.
  • Ambridge B, Ambridge C (2020). The retreat from transitive-causative overgeneralization errors: A review and diary study. Current perspectives on child language acquisition: How children use their environment to learn. doi:10.1075/tilar.27.05amb
  • Ambridge B, Blything RP (2016). A connectionist model of the retreat from verb argument structure overgeneralization. J Child Lang. doi:10.1017/S0305000915000586
  • Ambridge B, Brandt S (2013). Lisa filled water into the cup: The roles of entrenchment, pre-emption and verb semantics in German speakers' L2 acquisition of English locatives. Zeitschrift fur Anglistik und Amerikanistik. doi:10.1515/zaa-2013-0304
  • Ambridge B, Barak L, Wonnacott E (2018). Effects of both preemption and entrenchment in the retreat from verb overgeneralization errors: Four reanalyses, an extended replication, and a meta-Analytic synthesis. Collabra Psychol. doi:10.1525/collabra.133
  • Ambridge B, Bidgood A, Twomey KE (2015). Preemption versus Entrenchment: Towards a construction-general solution to the problem of the retreat from verb argument structure overgeneralization. PLoS One. doi:10.1371/journal.pone.0123723
  • Ambridge B, Maitreyee R, Tatsumi T (2020). The Crosslinguistic acquisition of sentence structure: Computational modeling and grammaticality judgments from adult and child speakers of English, Japanese, Hindi, Hebrew and K'iche'. Cognition. doi:10.1016/j.cognition.2020.104310
  • Ambridge B, Pine JM, Rowland CF (2014). Avoiding dative overgeneralisation errors: semantics, statistics or both?. Lang Cogn Neurosci. doi:10.1080/01690965.2012.738300
  • Ambridge B, Pine JM, Rowland CF (2012a). The roles of verb semantics, entrenchment, and morphophonology in the retreat from dative argument-structure overgeneralization errors. Language. doi:10.1353/LAN.2012.0000
  • Ambridge B, Pine JM, Rowland CF (2009). A semantics-based approach to the "no negative evidence" problem. Cogn Sci. doi:10.1111/j.1551-6709.2009.01055.x
  • Ambridge B, Pine JM, Rowland CF (2012b). Semantics versus statistics in the retreat from locative overgeneralization errors. Cognition. doi:10.1016/j.cognition.2012.01.002
  • Ambridge B, Pine JM, Rowland CF (2011). Children use verb semantics to retreat from overgeneralization errors: A novel verb grammaticality judgment study. Cogn Linguist. doi:10.1515/cogl.2011.012
  • Ambridge B, Pine JM, Rowland CF (2008). The effect of verb semantic class and verb frequency (entrenchment) on children's and adults' graded judgements of argument-structure overgeneralization errors. Cognition. doi:10.1016/j.cognition.2006.12.015
  • Ambridge B, Pine JM, Rowland CF (2013). The retreat from overgeneralization in child language acquisition: Word learning, morphology, and verb argument structure. Wiley Interdiscip Rev Cogn Sci. doi:10.1002/wcs.1207
  • Barak L, Goldberg AE, Stevenson S (2016). Comparing computational cognitive models of generalization in a language acquisition task. Proceedings of the 2016 conference on Empirical Methods in Natural Language Processing. doi:10.18653/v1/D16-1010
  • Bates D, Mächler M, Bolker B (2015). Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw. doi:10.18637/jss.v067.i01
  • Bidgood A, Ambridge B, Pine JM (2014). The retreat from locative overgeneralisation errors: A novel verb grammaticality judgment study. PLoS One. doi:10.1371/journal.pone.0097634
  • Bidgood A, Pine J, Rowland C (2021). Verb argument structure overgeneralisations for the English intransitive and transitive constructions: Grammaticality judgments and production priming. Language and Cognition. doi:10.1017/langcog.2021.8
  • Blything RP, Ambridge B, Lieven EVM (2014). Children use statistics and semantics in the retreat from overgeneralization. PLoS One. doi:10.1371/journal.pone.0110009
  • Bowerman M (1988). The "no negative evidence" problem: how do children avoid constructing an overly general grammar?.
  • Boyd JK, Goldberg AE (2011). Learning what not to say: The role of statistical preemption and categorization in a-adjective production. Language. doi:10.1353/LAN.2011.0012
  • Braine MDS, Brooks PJ (1995). Verb argument structure and the problem of avoiding an overgeneral grammar.
  • Brooks PJ, Tomasello M, Dodson K (1999). Young children's overgeneralizations with fixed transitivity verbs. Child Dev. doi:10.1111/1467-8624.00097
  • Brooks PJ, Zizak O (2002). Does preemption help children learn verb transitivity?. J Child Lang. doi:10.1017/s0305000902005287
  • Fukuda S, Fukuda SE (2001). The acquisition of complex predicates in Japanese specifically language-impaired and normally developing children. Brain Lang. doi:10.1006/brln.2000.2404
  • Goldberg AE (1995). Constructions: A construction grammar approach to argument structure.
  • Goldberg AE (2011). Corpus evidence of the viability of statistical preemption. Cogn Linguist. doi:10.1515/cogl.2011.006
  • Goldberg AE (2019). Explain Me This.
  • Gropen J, Pinker S, Hollander M (1991). Affectedness and Direct Objects: the Role of Lexical Semantics in the Acquisition of Verb Argument Structure. Cognition. doi:10.1016/0010-0277(91)90035-3
  • Harmon Z, Kapatsinski V (2017). Putting old tools to novel uses: The role of form accessibility in semantic extension. Cogn Psychol. doi:10.1016/j.cogpsych.2017.08.002
  • Hoel E (2021). The overfitted brain: Dreams evolved to assist generalization. Patterns (N Y). doi:10.1016/j.patter.2021.100244
  • Hsu AS, Chater N (2010). The logical problem of language acquisition: A probabilistic perspective. Cogn Sci. doi:10.1111/j.1551-6709.2010.01117.x
  • Hsu AS, Horng A, Griffiths TL (2017). When absence of evidence is evidence of absence: Rational inferences from absent data. Cogn Sci. doi:10.1111/cogs.12356
  • Irani A (2009). How Children learn to disappear causative errors. In M.M. Brown and B. Dailey (Eds.). Proceedings of the 43rd Boston University Conference on Language Development.
  • Kapatsinski V, Olejarczuk P, Redford MA (2017). Perceptual Learning of Intonation Contour Categories in Adults and 9- to 11-Year-Old Children: Adults Are More Narrow-Minded. Cogn Sci. doi:10.1111/cogs.12345
  • Kuznetsova A, Brockhoff PB, Christensen RHB (2017). lmerTest Package: Tests in Linear Mixed Effects Models. J Stat Softw. doi:10.18637/jss.v082.i13
  • Li P, MacWhinney B (1996). Cryptotype, overgeneralization and competition: A connectionist model of the learning of English reversive prefixes. Conn Sci. doi:10.1080/095400996116938
  • MacWhinney B (2000). The CHILDES Project: Tools for analyzing talk. doi:10.1162/coli.2000.26.4.657
  • Nakaishi Y (2016). The errors of Transitive and Intransitive Verbs by Two Japanese L1 Children [nihongo wo bogo to suru ni yooji no jidooshi tadooshi no goyoo].
  • Peirce J, Gray JR, Simpson S (2019). PsychoPy2: Experiments in behavior made easy. Behav Res Methods. doi:10.3758/s13428-018-01193-y
  • Perek F, Goldberg AE (2017). Linguistic generalization on the basis of function and constraints on the basis of statistical preemption. Cognition. doi:10.1016/j.cognition.2017.06.019
  • Perfors A, Tenenbaum JB, Wonnacott E (2010). Variability, negative evidence, and the acquisition of verb argument constructions. J Child Lang. doi:10.1017/S0305000910000012
  • Pinker S (1989). Learnability and Cognition: The acquisition of argument structure.
  • (2020). R: A language and environment for statistical computing.
  • Robenalt C, Goldberg AE (2015). Judgment evidence for statistical preemption: It is relatively better to than to a rabbit, but a lifeguard can equally well or children to shore. Cogn Linguist. doi:10.1515/cog-2015-0004
  • Robenalt C, Goldberg AE (2016). Nonnative speakers do not take competing alternative expressions into account the way native speakers do. Lang Learn. doi:10.1111/lang.12149
  • Shibatani M, Pardeshi P (2002). The causative continuum. doi:10.1075/tsl.48.07shi
  • Smith CS (1970). Jespersen's 'move and change' class and causative verbs in English.
  • Stefanowitsch A (2008). Negative entrenchment: A usage-based approach to negative evidence. Cogn Linguist. doi:10.1515/COGL.2008.020
  • Theakston AL (2004). The role of entrenchment in children's and adults' performance on grammaticality judgment tasks. Cognitive Development. doi:10.1016/j.cogdev.2003.08.001
  • Twomey K, Chang F, Ambridge B (2014). Do as I say, not as I do: A lexical distributional account of English locative verb class acquisition. Cogn Psychol. doi:10.1016/j.cogpsych.2014.05.001
  • Twomey KE, Chang F, Ambridge B (2016). Lexical distributional cues, but not situational cues, are readily used to learn abstract locative verb-structure associations. Cognition. doi:10.1016/j.cognition.2016.05.001
  • Venables WN, Ripley BD (2002). Modern Applied Statistics with S. doi:10.1007/978-0-387-21706-2
  • Warriner AB, Kuperman V, Brysbaert M (2013). Norms of valence, arousal, and dominance for 13,915 English lemmas. Behav Res Methods. doi:10.3758/s13428-012-0314-x
  • Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. doi:10.1007/978-3-319-24277-4
  • Wicherts JM, Veldkamp CL, Augusteijn HE (2016). Degrees of freedom in planning, running, analyzing, and reporting psychological studies: A checklist to avoid p-hacking. Front Psychol. doi:10.3389/fpsyg.2016.01832
  • Wonnacott E, Newport EL, Tanenhaus MK (2008). Acquiring and processing verb argument structure: Distributional learning in a miniature language. Cogn Psychol. doi:10.1016/j.cogpsych.2007.04.002