There is a newer version of the record available.

Published December 30, 2021 | Version v1
Journal article Restricted

INFLUENCE OF STRUCTURAL PARAMETERS ON CORROSION RESISTANCE OF OIL AND GAS FIELD EQUIPMENT

  • 1. Ural State Mining University, Ekaterinburg, Russian Federation

Description

To improve the reliability and durability of mining equipment, it is promising to use micro- and nanostructured metals and alloys, as well as metal-matrix composites. Ordinary and nanostructured samples of aluminum, copper, bronze C95200, an aluminum-magnesium alloy 518.0, and an aluminum-matrix dispersion-reinforced composite containing 6.3 wt% titanium were studied. Structuring processing of metallic materials was carried out in the liquid phase state. The aluminum-matrix composite was synthesized by powder metallurgy. A model electrolyte solution, containing 30 g / L NaCl and an addition of acetic acid to pH = 4.0, was used as a corrosive medium. Corrosion resistance test base was 144 hours, temperature + 22 ° C, the volume of the solution in the cell with three samples was 500 ml. The relative calculated test error was 5%. A continuous uniform distribution of corrosion damage to the metal surface is observed for all studied samples. In this case, the corrosion rate (П, mm / year) of nanostructured metals and alloys samples is approximately 11% less than the corrosion rate of the same metals and alloys samples that have not undergone structuring treatment. For the aluminum matrix composite, it was noted that the dispersed reinforcement of aluminum with titanium provides an increase in the corrosion resistance of the matrix metal by 9.6%. The results of the conducted studies indicate an increased corrosion resistance of nanostructured metallic materials and an aluminum-matrix composite, which is important when they are used as part of equipment operated in a corrosive environment.

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Additional details

References

  • Власов С.Г., Немчинова Н.В., Зелинская Е.В. Характеристика агрессивной среды, воздействующей на надежность эксплуатации горного оборудования // Интернет-журнал «НАУКОВЕДЕНИЕ» Том 9, №1 (2017) URL: http://naukovedenie.ru/PDF/41TVN117.pdf (доступ свободный).
  • Каблов Е.Н. Материалы нового поколения – основа инноваций, технологического лидерства и национальной безопасности России // Интеллект и технологии. 2016. №2 (14). С. 16–21.
  • Fortes, J.C., Dávila, J.M., Sarmiento, A.M. et al. Corrosion of Metallic and Structural Elements Exposed to Acid Mine Drainage (AMD). Mine Water Environ 39, 195–203 (2020). https://doi.org/10.1007/s10230-020-00681-y
  • Abdalsamed I. A., Amar I. A., Altohami F. A., Salih F. A., Mazek M. S., Ali M. A., Sharif A. A. Corrosion Strategy in Oil Field System. Journal of Chemical Reviews. 2020. Vol. 2. no. 1. pp. 28-39 DOI:10.33945/SAMI/JCR.2020.1.2
  • Huang C., Chen X., Xue Z., Wang T. Effect of structure: A new insight into nanoparticle assemblies from inanimate to animate. SCIENCE ADVANCES. 2020: eaba1321. DOI: 10.1126/sciadv.aba1321
  • Bykov Yu. A. Structural nanomaterials. Metallurgiya mashinostroyeniya. 2011. no. 1. pp. 9-19. [In Russ].
  • Khazin M. L., Apakashev R. A. Micro and nanostructured copper films in mechanical engineering. Materials Today: Proceedings. 2019. Vol. 19. Part 5, pp. 25-2531.
  • Apakashev R. A., Khazin M. L., Krasikov S. A. Effect of Nanostructuring of Aluminum, Copper, and Alloys on Their Basis Wear for Resistance and Hardness. Journal of Friction and Wear. 2020, Vol. 41. no. 5. pp. 428–431. DOI: 10.3103/s1068366620050037R.A.
  • GOST 9.908-85 Unified system of protection against corrosion and aging. Metals and alloys. Methods for the determination of indicators of corrosion and corrosion resistance. M.: IPK Izdatel'stvo standartov. 1999. 17 p. [In Russ].
  • Soenoko R., Setyarini P. H., Hidayatullah S., Ma'arif M. S., Gapsari F. Corrosion characterization of Cu-based alloy in different environment. Metalurgija. 2020. Vol. 59. no. 3. pр. 373-376. https://hrcak.srce.hr/237045
  • Rohatgi P. K., Xiang C., Gupta N. Aqueous corrosion of metal matrix composites. In Comprehensive Composite Materials II. 2017. pp. 287-312. Elsevier. https://doi.org/10.1016/B978-0-12-803581-8.09985-9
  • Sun L., He, X., Lu J. Nanotwinned and hierarchical nanotwinned metals: a review of experimental, computational and theoretical efforts. npj Comput Mater. 2018. Vol 4. pр. 6. https://doi.org/10.1038/s41524-018-0062-2
  • Berlanga-Labari C., Biezma-Moraleda M. V., Rivero P. J. Corrosion of Cast Aluminum Alloys: A Review. Metals. 2020. Vol. 10. no. 10. pр. 1384-1423. doi:10.3390/met10101384C.
  • Esquivel J., Murdoch H. A., Darling K. A., Gupta R. K. Excellent corrosion resistance and hardness in Al alloys by extended solid solubility and nanocrystalline structure. Materials Research Letters. 2018. Vol. 6 no. 1. pр. 79-83, DOI: 10.1080/21663831.2017.1396262
  • Chen T., Li J., Hao Y. Microstructures and corrosion properties of casting in situ Al3Ti-Al composites. Rare Metals. 2010. Vol. 29. pр. 78–85. https://doi.org/10.1007/s12598-010-0014-6
  • Sambathkumar M., Navaneethakrishnan P., Ponappa K., Sasikumar K. S. K. Mechanical and Corrosion Behavior of Al7075 (Hybrid) Metal Matrix Composites by Two Step Stir Casting Process. Lat. Am. j. solids struct. 2017. Vol. 14. no. 2. pр. 243-255. https://doi.org/10.1590/1679-78253132