Geospatial Evaluation of Land Use and Land Cover Changes in Ashulia Industrial Hub in Dhaka, Bangladesh
Description
Spatial and temporal evaluation of the land use and land cover (LULC) changes, its dynamism and overall consequences are considered the fundamental variables in global climate change. These immense changes influence ecosystem, life, and livelihoods. Over the last few decades, industrial expansion in Bangladesh has a major effect on LULC across the suburban areas of the capital city Dhaka, especially the surrounding areas of Ashulia industrial hub. While providing new approaches to improve the frontiers of antecedent revolutions, particularly those of LULC changes monitoring and mapping, this study tried to evaluate further land development and planning in the study area between 2014 and 2020. Remote sensing imageries and relevant multiple secondary information were consecutively used as datasets. The interactive supervised classification tool using a maximum likelihood process was applied in LULC changes evaluations, detections, and as well providing fruitful explanations. Therefore, evaluated LULC maps’ overall accuracies were between 84% and96%, and kappa coefficient between 0.83 and 0.92. The results revealed that the urbanization and built-up area were the prime LULC type (77.36% in 2020) in the study area and were exceedingly increasing land cover type over water bodies, bare land and vegetation. Overall, in between 2014 and 2020, the LULC types as of water bodies, barelands, and vegetation have decreased by 212 hectares, 435 hectares, and 470 hectares, respectively. Moreover, overall downward trends of LULC changes were identified in all the land use types except built-up area. Hence, imbalanced land conversions and lack of proper planning together were creating the region highly vulnerable to several disasters as well as imbalanced ecosystem. Th study findings can help the decision makers and planners apart from future research.
Files
nr-04-04-03-hosenetal-m00269.pdf
Files
(1.0 MB)
Name | Size | Download all |
---|---|---|
md5:e275ce60495d893de7435d400f64b69c
|
1.0 MB | Preview Download |