Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published October 30, 2020 | Version v1
Journal article Open

Automatic Liver Cancer Detection using Sobel Edge Detection & Morphological Dilation in Digital Image Processing

  • 1. Dept. of Electronics and Communication, University Institute of Technology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, Madhya Pradesh, India.
  • 1. Publisher

Description

Image processing is a field that is widely used in medical science to identify various cancers or tumors. Diagnosing liver cancer is not an easy task and is usually performed by doctors and diagnosed manually. Filtering technique should be used precisely by not compromising the sensitive information. Most of the technique may distort the actual information that causes false alarm rate. A liver is an uneven or bit complex in structure where there are various spots may be considered as tumor that provokes the system towards invalid turing test. This paper proposes a system that would be able to recognize cancer automatically from a tomographical image along with high precision that stabilize the system with less processing time. Here the objective of the system is to obtain the result using Sobel operator that retains edges and eroding the unwanted areas and preceding high accuracy with less error rate. System also intended to extract the impaired area that has been affected by liver cancer. System acquired the better precision rate as compare to the previously implemented systems with minimal error rate.

Files

L80111091220.pdf

Files (512.4 kB)

Name Size Download all
md5:29c814f6f02b8b5f59b0e140138a8a87
512.4 kB Preview Download

Additional details

Related works

Is cited by
Journal article: 2278-3075 (ISSN)

Subjects

ISSN
2278-3075
Retrieval Number
100.1/ijitee.L80111091220