Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published October 30, 2020 | Version v1
Journal article Open

Ontology-Based Metasearch Engine in Electronics Area

  • 1. Technical University of Sofia, College of Energy and Electronics, Botevgrad, Bulgaria
  • 1. Publisher

Description

Paper The goal of search engines is to return accurate and complete results. Satisfying concrete user information needs becomes more and more difficult because of inability in it complete explicit specification and short comes of keyword-based searching and indexing. General search engines have indexed millions of web resources and often return thousands of results to the user query (most of them often inadequate). To increase result’s precession, users sometimes choose search engines, specialized in searching concrete domain, personalized or semantic search. A grand variety of specialized search engines may be found (and used) in the internet, but no one may guarantee finding of existing in the web and needed for the concrete user resources. In this paper we present our research on building a meta-search engine that uses domain and user profile ontologies, as well as information (or metadata), directly extracted from web sites to improve search result quality. We state main requirements to the search engine for students, PHD students and scientists, propose a conceptual model and discuss approaches of it practical realization. Our prototype metasearch engine first perform interactive semantic query refinement and then, using refined query, it automatically generate several search queries, sends them to different digital libraries and web search engines, augments and ranks returned results, using ontologically represented domain and user metadata. For testing our model, we develop domain ontologies in the electronic domain. We will use ontological terminology representation to propose recommendations for query disambiguation, and to ensure knowledge for reranking the returned results. We also present some partial initial implementations query disambiguation strategies and testing results.

Files

L80141091220.pdf

Files (634.2 kB)

Name Size Download all
md5:fb5be0998b30e6c499140f19d66bfba0
634.2 kB Preview Download

Additional details

Related works

Is cited by
Journal article: 2278-3075 (ISSN)

Subjects

ISSN
2278-3075
Retrieval Number
100.1/ijitee.L80141091220