Published April 30, 2017
| Version v1
Preprint
Open
Series Representation of Power Function
Description
Abstract. This paper presents the way to make expansion for the next form function: $y=x^n, \ \forall(x,n) \in {\mathbb{N}}$ to the numerical series. The most widely used methods to solve this problem are Newton’s Binomial Theorem and Fundamental Theorem of Calculus (that is, derivative and integral are inverse operators). The paper provides the other kind of solution, based on induction from particular to general case, except above described theorems.
MSC 2010: 40C15, 32A05
arXiv:1603.02468
DOI: 10.6084/m9.figshare.3475034
Notes
Files
series_representation_of_power_function_2017_kolosov_petro_number_theory_mathematics.pdf
Files
(261.2 kB)
| Name | Size | Download all |
|---|---|---|
|
md5:28791f01e330a34590ba66ead8a59154
|
261.2 kB | Preview Download |
Additional details
Related works
- Is identical to
- arXiv:1603.02468 (arXiv)
- 10.17605/OSF.IO/657QH (DOI)
References
- Conway, J. H. and Guy, R. K. "Pascal's Triangle." In The Book of Numbers. New York: Springer-Verlag, pp. 68-70, 1996.
- Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 10, 1972.
- Weisstein, Eric W. "Power." From MathWorld
- Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 307-308, 1985.
- Rudin, Walter (1987). Real and complex analysis (3rd ed.). New York: McGraw-Hill. p. 1. ISBN 978-0-07-054234-1.
- Weisstein, Eric W. "Finite Difference." From MathWorld
- Richardson, C. H. An Introduction to the Calculus of Finite Differences. p. 5, 1954.
- Bakhvalov N. S. Numerical Methods: Analysis, Algebra, Ordinary Differential Equations p. 59, 1977.
Subjects
- Mathematics
- 1
- Math
- 2
- Maths
- 3
- Science
- 4
- Algebra
- 5
- Number theory
- 6
- Numerical analysis
- 7
- Mathematical analysis
- 8
- Functional analysis
- 9
- STEM
- 10
- Numercal methods
- 11
- Classical Analysis and ODEs
- 12
- Analysis of PDEs
- 13
- General Mathematics
- 14
- Discrete Mathematics
- 15
- Applied Mathematics
- 16
- Calculus of variations
- 17