Published December 29, 2021 | Version v1
Book Open

Fire resistance of reinforced concrete and steel structures

Description

The scientific bases of ensuring fire resistance of reinforced concrete and steel building structures in the conditions of modern extreme influences are laid.

The current state of fire safety of buildings and structures, as well as approaches, methods and tools for its assessment are analyzed. Analysis of emergencies and fires in the world has shown that the vast majority of them occur in buildings and structures. It is shown that the cause of catastrophic consequences and destruction is the non-compliance of the actual limit of fire resistance of building structures with regulatory requirements. This is due to the imperfection of methods and means of assessing the fire resistance of building structures, including fire-retardant.

To overcome the shortcomings identified during the analysis, the paper develops physical and mathematical models of thermal processes occurring in the fire-retardant reinforced concrete structure. Based on the proposed models, a computational-experimental method for estimating the fire resistance of such structures has been developed. The efficiency of the proposed method was tested by identifying the relationship between the parameters of the fire-retardant plaster coating “Neospray” and the fire resistance of fire-retardant multi-hollow reinforced concrete floor.

The study of fire resistance of steel structures is proposed to be carried out using reduced samples in the form of steel plates with dimensions of 500×500×5 mm. Based on the proposed models, a calculation and experimental method for estimating the fire resistance of steel structures, as well as an algorithm and procedures for its implementation have been developed. The verification of the efficiency of the proposed method was carried out in the ANSYS software package using the aged coating “Phoenix STS” and the coating “Amotherm Steel Wb” under heating conditions at the temperature of the hydrocarbon fire.

The reliability of the developed models and methods is checked. It is established that random errors in temperature measurement significantly affect the accuracy of determining the thermophysical characteristics and limits of fire resistance. In general, the efficiency of the proposed calculation and experimental methods with sufficient accuracy for engineering calculations is confirmed.

Files

Fire resistance of reinforced concrete and steel structures.pdf

Files (6.7 MB)

Additional details

References

  • Serant, A. Y., Sokha, Yu. I. (2012). Peculiarities and principles of formation of the systemof public administration of natural and man­caused safety. Efficacy public administration, 32, 457–465.
  • Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Y., Butenko, T. et. al. (2019). Construction of the method for semi­adaptive threshold scaling transformation when computing recurrent plots. Eastern­European Journal of Enterprise Technologies, 4 (10 (100)), 22–29. doi: http://doi.org/10.15587/1729­4061.2019.176579
  • Tiutiunyk, V. V., Ivanets, H. V., Tolkunov, I. A., Stetsyuk, E. I. (2018). System approach for readiness assessment units of civil defense to actions at emergency situations. Scientific Bulletin of National Mining University, 1, 99–105. doi: http://doi.org/10.29202/nvngu/2018­1/7
  • Pospelov, B., Rybka, E., Meleshchenko, R., Gornostal, S., Shcherbak, S. (2017). Results of experimental research into correlations between hazardous factors of ignition of materials in premises. Eastern­European Journal of Enterprise Technologies, 6 (10 (90)), 50–56. doi: http://doi.org/10.15587/1729­4061.2017.117789
  • Pospelov, B., Rybka, E., Meleshchenko, R., Borodych, P., Gornostal, S. (2019). Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures. Eastern­European Journal of Enterprise Technologies, 1 (10 (97)), 29–35. doi: http://doi.org/10.15587/1729­4061.2019.155027
  • Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Karpets, K., Pirohov, O. et. al. (2019). Development of the correlation method for operative detection of recurrent states. Eastern­European Journal of Enterprise Technologies, 6 (4 (102)), 39–46. doi: http://doi.org/10.15587/1729­4061.2019.187252
  • Kustov, M., Kalugin, V., Tutunik, V., Tarakhno, O. (2019). Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 92–99. doi: http://doi.org/10.32434/0321­4095­2019­122­1­92­99
  • Vasyukov, A., Loboichenko, V., Bushtec, S. (2016). Identification of bottled natural waters by using direct conductometry. Ecology, Environment and Conservation, 22 (3), 1171–1176.
  • Dadashov, I., Loboichenko, V., Kireev, A. (2018). Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products. Pollution Research Paper, 37 (1), 63–77.
  • Migalenko, K., Nuianzin, V., Zemlianskyi, A., Dominik, A., Pozdieiev, S. (2018). Development of the technique for restricting the propagation of fire in natural peat ecosystems. Eastern­European Journal of Enterprise Technologies, 1 (10 (91)), 31–37. doi: http://doi.org/10.15587/1729­4061.2018.121727
  • Popov, O., Іatsyshyn, A., Kovach, V., Artemchuk, V., Taraduda, D., Sobyna, V. et. al. (2019). Analysis of Possible Causes of NPP Emergencies to Minimize Risk of Their Occurrence. Nuclear and Radiation Safety, 1 (81), 75–80. doi: http://doi.org/10.32918/nrs.2019.1(81).13
  • Vambol, S., Vambol, V., Kondratenko, O., Suchikova, Y., Hurenko, O. (2017). Assessment of improvement of ecological safety of power plants by arranging the system of pollutant neutralization. Eastern­European Journal of Enterprise Technologies, 3 (10 (87)), 63–73. doi: http://doi.org/10.15587/1729­4061.2017.102314
  • Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Harbuz, S., Bezuhla, Y. et. al. (2020). Use of uncertainty function for identification of hazardous states of atmospheric pollution vector. Eastern­European Journal of Enterprise Technologies, 2 (10 (104)), 6–12. doi: http://doi.org/10.15587/1729­4061.2020.200140
  • Sadkovyi, V., Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Rud, A. et. al. (2020). Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations. Eastern­European Journal of Enterprise Technologies, 6 (10 (108)), 14–22. doi: http://doi.org/10.15587/1729­4061.2020.218714
  • Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2017). Numerical simulation of the creation of a fire fighting barrier using an explosion of a combustible charge. Eastern­European Journal of Enterprise Technologies, 6 (10 (90)), 11–16. doi: http://doi.org/10.15587/1729­4061.2017.114504
  • Danchenko, Y., Andronov, V., Kariev, A., Lebedev, V., Rybka, E., Meleshchenko, R., Yavorska, D. (2017). Research into surface properties of disperse fillers based on plant raw materials. Eastern­European Journal of Enterprise Technologies, 5 (12 (89)), 20–26. doi: http://doi.org/10.15587/1729­4061.2017.111350
  • Danchenko, Y., Andronov, V., Barabash, E., Obigenko, T., Rybka, E., Meleshchenko, R., Romin, A. (2017). Research of the intramolecular interactions and structure in epoxyamine composites with dispersed oxides. Eastern­European Journal of Enterprise Technologies, 6 (12 (90)), 4–12. doi: http://doi.org/10.15587/1729­4061.2017.118565
  • Otrosh, Y., Semkiv, O., Rybka, E., Kovalov, A. (2019). About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering, 708 (1), 012065. doi: http://doi.org/10.1088/1757­899x/708/1/012065
  • Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2018). Improving the installation for fire extinguishing with finely­dispersed water. Eastern­European Journal of Enterprise Technologies, 2 (10 (92)), 38–43. doi: http://doi.org/10.15587/1729­4061.2018.127865
  • Kondratenko, O., Vambol, S., Strokov, O., Avramenko, A. (2015). Mathematical model of the efficiency of diesel particulate matter filter. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 55–61.
  • Semko, A., Beskrovnaya, M., Vinogradov, S., Hritsina, I., Yagudina, N. (2014). The usage of high speed impulse liquid jets for putting out gas blowouts. Journal of Theoretical and Applied Mechanics, 52 (3), 655–664.
  • Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Gornostal, S. (2018). Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials. Eastern­European Journal of Enterprise Technologies, 5 (10 (95)), 25–30. doi: http://doi.org/10.15587/1729­4061.2018.142995
  • Panchenko, A., Voloshina, A., Boltyansky, O., Milaeva, I., Grechka, I., Khovanskyy, S. et. al. (2018). Designing the flow­through parts of distribution systems for the PRG series planetary hydraulic motors. Eastern­European Journal of Enterprise Technologies, 3 (1 (93)), 67–77. doi: http://doi.org/10.15587/1729­4061.2018.132504
  • Pospelov, B., Andronov, V., Rybka, E., Popov, V., Romin, A. (2018). Experimental study of the fluctuations of gas medium parameters as early signs of fire. Eastern­European Journal of Enterprise Technologies, 1 (10 (91)), 50–55. doi: http://doi.org/10.15587/1729­4061.2018.122419
  • Vambol, S., Vambol, V., Bogdanov, I., Suchikova, Y., Rashkevich, N. (2017). Research of the influence of decomposition of wastes of polymers with nano inclusions on the atmosphere. Eastern­European Journal of Enterprise Technologies, 6 (10 (90)), 57–64. doi: http://doi.org/10.15587/1729­4061.2017.118213
  • Danchenko, Y., Andronov, V., Teslenko, M., Permiakov, V., Rybka, E., Meleshchenko, R., Kosse, A. (2018). Study of the free surface energy of epoxy composites using an automated measurement system. Eastern­European Journal of Enterprise Technologies, 1 (12 (91)), 9–17. doi: http://doi.org/10.15587/1729­4061.2018.120998
  • Otrosh, Y., Rybka, Y., Danilin, O., Zhuravskyi, M. (2019). Assessment of the technical state and the possibility of its control for the further safe operation of building structures of mining facilities. E3S Web of Conferences, 123, 01012. doi: http://doi.org/10.1051/e3sconf/201912301012
  • Andronov, V., Pospelov, B., Rybka, E., Skliarov, S. (2017). Examining the learning fire detectors under real conditions of application. Eastern­European Journal of Enterprise Technologies, 3 (9 (87)), 53–59. doi: http://doi.org/10.15587/1729­4061.2017.101985
  • Pospelov, B., Andronov, V., Rybka, E., Popov, V., Semkiv, O. (2018). Development of the method of frequency­temporal representation of fluctuations of gaseous medium parameters at fire. Eastern­European Journal of Enterprise Technologies, 2 (10 (92)), 44–49. doi: http://doi.org/10.15587/1729­4061.2018.125926
  • Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern­European Journal of Enterprise Technologies, 3 (9 (93)), 34–40. doi: http://doi.org/10.15587/1729­4061.2018.133127
  • Andronov, V., Pospelov, B., Rybka, E. (2017). Development of a method to improve the performance speed of maximal fire detectors. Eastern­European Journal of Enterprise Technologies, 2 (9 (86)), 32–37. doi: http://doi.org/10.15587/1729­4061.2017.96694
  • Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Research into dynamics of setting the threshold and a probability of ignition detection by self­adjusting fire detectors. Eastern­European Journal of Enterprise Technologies, 5 (9 (89)), 43–48. doi: http://doi.org/10.15587/1729­4061.2017.110092
  • Osipchik, V. S., Yakovleva, R. A., Spirina, E. Y., Obizhenko, T. N., Rybko, E. A., Kondratenko, A. V. (2011). Influence of the Composition of the Redox System on the Thermo­Oxidative Degradation of Intercalated Graphites. International Polymer Science and Technology, 38 (1), 53–56. doi: http://doi.org/10.1177/0307174x1103800111
  • Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Design of fire detectors capable of self­adjusting by ignition. Eastern­European Journal of Enterprise Technologies, 4 (9 (88)), 53–59. doi: http://doi.org/10.15587/1729­4061.2017.108448
  • Abramov, Yu. A., Rybka, E. A., Gvozd, V. M. (2013). Termicheskii kompleks dlya ispytanii obraztsov stroitelnykh konstruktsii. Kharkiv: NUGZU, 128.
  • Pro zatverdzhennia Tekhnichnoho rehlamentu budivelnykh vyrobiv, budivel i sporud (2006). Postanova KMU No. 1764. 20.12.2006. Available at: https://zakon.rada.gov.ua/laws/show/1764­2006­%D0%BF#Text
  • Ragimov, S., Sobyna, V., Vambol, S., Vambol, V., Feshchenko, A., Zakora, A. et. al. (2018). Physical modelling of changes in the energy impact on a worker taking into account high­temperature radiation. Journal of Achievements in Materials and Manufacturing Engineering, 1 (91), 27–33. doi: http://doi.org/10.5604/01.3001.0012.9654
  • Kustov, M., Slepuzhnikov, E., Lipovoy, V., Khmyrov, I., Dadashov, I. F., Buskin, O. (2019). Procedure for Implementation of the Method of Artificial Deposition of Radioactive Substances from the Atmosphere. Nuclear and Radiation Safety, 3 (83), 13–25. doi: http://doi.org/10.32918/nrs.2019.3(83).02
  • Dubinin, D., Cherkashyn, O., Maksymov, A., Beliuchenko, D., Hovalenkov, S., Shevchenko, S., Avetisyan, V. (2020). Investigation of the effect of carbon monoxide on people in case of fire in a building. Sigurnost, 62 (4), 347–357. doi: http://doi.org/10.31306/s.62.4.2
  • Otrosh, Y., Kovalov, A., Semkiv, O., Rudeshko, I., Diven, V. (2018). Methodology remaining lifetime determination of the building structures. MATEC Web of Conferences, 230, 02023. doi: http://doi.org/10.1051/matecconf/201823002023
  • Otrosh, Y., Surianinov, M., Golodnov, A., Starova, O. (2019). Experimental and Computer Researches of Ferroconcrete Beams at High­Temperature Influences. Materials Science Forum, 968, 355–360. doi: http://doi.org/10.4028/www.scientific.net/msf.968.355
  • Vasiliev, M. I., Movchan, I. O., Koval, O. M. (2014). Diminishing of ecological risk via optimization of fire­extinguishing system projects in timber­yards. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 106–113.
  • Popov, O., Iatsyshyn, A., Kovach, V., Artemchuk, V., Kameneva, I., Taraduda, D. et. al. (2020). Risk Assessment for the Population of Kyiv, Ukraine as a Result of Atmospheric Air Pollution. Journal of Health and Pollution, 10 (25). doi: http://doi.org/10.5696/2156­9614­10.25.200303
  • Popov, O., Iatsyshyn, A., Kovach, V., Artemchuk, V., Taraduda, D., Sobyna, V. et. al. (2019). Physical Features of Pollutants Spread in the Air During the Emergency at NPPs. Nuclear and Radiation Safety, 4 (84), 88–98. doi: http://doi.org/10.32918/nrs.2019.4(84).11
  • Novak, S. V., Nefedchenko, L. M., Abramov, O. O. (2010). Metody vyprobuvan budivelnykh konstruktsii ta vyrobiv na vohnestiikist. Kyiv: Pozhinformtekhnika, 132.
  • Bashynska, O., Otrosh, Y., Holodnov, O., Tomashevskyi, A., Venzhego, G. (2020). Methodology for Calculating the Technical State of a Reinforced­Concrete Fragment in a Building Influenced by High Temperature. Materials Science Forum, 1006, 166–172. doi: http://doi.org/10.4028/www.scientific.net/msf.1006.166
  • Kovalov, A., Otrosh, Y., Rybka, E., Kovalevska, T., Togobytska, V., Rolin, I. (2020). Treatment of Determination Method for Strength Characteristics of Reinforcing Steel by Using Thread Cutting Method after Temperature Influence. Materials Science Forum, 1006, 179–184. doi: http://doi.org/10.4028/www.scientific.net/msf.1006.179
  • Pozdieiev, S., Nuianzin, O., Sidnei, S., Shchipets, S. (2017). Computational study of bearing walls fire resistance tests efficiency using different combustion furnaces configurations. MATEC Web of Conferences, 116, 02027. doi: http://doi.org/10.1051/matecconf/201711602027
  • Nuianzin, O., Pozdieiev, S., Hora, V., Shvydenko, A., Samchenko, T. (2018). Experimental study of temperature mode of a fire in a cable tunnel. Eastern­European Journal of Enterprise Technologies, 3 (10 (93)), 21–27. doi: http://doi.org/10.15587/1729­4061.2018.131792
  • Otrosh, Yu. A., Poklonskyi, V. H., Fesenko, O. A., Tarasiuk, V. H., Nemchynov, Yu. I., Baitala, Kh. Z. et. al. (2016). Rozrakhunok zalizobetonnykh konstruktsii na vohnestiikist vidpovidno do Yevrokodu 2. Kyiv: Intertekhnolohiia, 83.
  • Gravit, M., Golub, E. (2018). The fire resistant ceiling construction in a hydrocarbon fire. MATEC Web of Conferences, 245, 03004. doi: http://doi.org/10.1051/matecconf/201824503004
  • Vasilchenko, A., Doronin, E., Chernenko, O., Ponomarenko, I. (2019). Estimation of fire resistance of bending reinforced concrete elements based on concrete with disperse fibers. IOP Conference Series: Materials Science and Engineering, 708 (1), 012075. doi: http://doi.org/10.1088/1757­899x/708/1/012075
  • Surianinov, M., Andronov, V., Otrosh, Y., Makovkina, T., Vasiukov, S. (2020). Concrete and Fiber Concrete Impact Strength. Materials Science Forum, 1006, 101–106. doi: http://doi.org/10.4028/www.scientific.net/msf.1006.101
  • Nekora, O., Slovynsky, V., Pozdieiev, S. (2017). The research of bearing capacity of reinforced concrete beam with use combined experimental­computational method. MATEC Web of Conferences, 116, 02024. doi: http://doi.org/10.1051/matecconf/201711602024
  • Pozdieiev, S., Nekora, O., Kryshtal, T., Zazhoma, V., Sidnei, S. (2018). Method of the calculated estimation of the possibility of progressive destruction of buildings in result of fire. MATEC Web of Conferences, 230, 02026. doi: http://doi.org/10.1051/matecconf/201823002026
  • Jiangtao, Y., Yichao, W., Kexu, H., Kequan, Y., Jianzhuang, X. (2017). The performance of near­surface mounted CFRP strengthened RC beam in fire. Fire Safety Journal, 90, 86–94. doi: http://doi.org/10.1016/j.firesaf.2017.04.031
  • Roitman, V. M., Gabdulin, R. Sh. (2013). Obespechenie stoikosti zhelezobetonnykh konstruktsii protiv vzryvoobraznogo razrusheniya pri pozhare s pomoschyu tonkosloinykh ognezaschitnykh vspuchivayuschikhsya pokrytii. Pozhary i chrezvychainye situatsii: predotvraschenie, likvidatsiya, 2­13, 11–16.
  • Takla, M., Tarsha, I. (2020). Effect of temperature on carrying capacity of concrete columns confined with multi­layers of CFRP. Jordan Journal of Civil Engineering, 14 (1), 14–26.
  • Vasilchenko, A., Doronin, E., Ivanov, B., Konoval, V. (2019). Effect of Residual Deformation of a Steel Column on its Fire Resistance under Combined Exposure "Explosion­Fire." Materials Science Forum, 968, 288–293. doi: http://doi.org/10.4028/www.scientific.net/msf.968.288
  • Korytchehko, K. V., Ozerov, A. N., Vinnikov, D. V., Skob, Y. A., Dubinin, D. P., Meleshchenko, R. G. (2018). Numerical simulation of influence of the non­equilibrium excitation of molecules on direct detonation initiation by spark discharge. Problems of Atomic Science and Technology, 116 (4), 194–199.
  • Skob, Y., Ugryumov, M., Dreval, Y. (2020). Numerical Modelling of Gas Explosion Overpressure Mitigation Effects. Materials Science Forum, 1006, 117–122. doi: http://doi.org/10.4028/www.scientific.net/msf.1006.117
  • Xue, C. (2020). Research on steel structure technology in civil engineering construction. IOP Conference Series: Earth and Environmental Science, 474 (7), 072072. doi: http://doi.org/10.1088/1755­1315/474/7/072072
  • Zhong, B., Zhang, Z., Ge, X., He, S., Huang, H. (2020). Development and Application of Fireproof Coatings for Fabricated Steel Structures. Material Sciences, 10 (12), 1027–1033. doi: http://doi.org/10.12677/ms.2020.1012121
  • Zhu, Y. Y., Zhao, D. L., He, Q., Zhang, J. X., Li, L. Y., Ma, D. D. (2014). Preparation and property of MCMB fireproof coating for steel structure. Gongneng Cailiao/Journal of Functional Materials, 45 (3), 03145–03148. doi: http://doi.org/10.3969/j.issn.1001­9731.2014.03.032
  • Xu, Q., Li, G.­Q., Wang, Y. C., Bisby, L. (2020). An experimental study of the behavior of intumescent coatings under localized fires. Fire Safety Journal, 115, 103003. doi: http://doi.org/10.1016/j.firesaf.2020.103003
  • De Silva, D., Bilotta, A., Nigro, E. (2020). Approach for modelling thermal properties of intumescent coating applied on steel members. Fire Safety Journal, 116. doi: http://doi.org/10.1016/j.firesaf.2020.103200
  • Morys, M., Häßler, D., Krüger, S., Schartel, B., Hothan, S. (2020). Beyond the standard time­temperature curve: Assessment of intumescent coatings under standard and deviant temperature curves. Fire Safety Journal, 112, 102951. doi: http://doi.org/10.1016/j.firesaf.2020.102951
  • Bychkov, A. S., Kondratiev, A. V. (2019). Criterion­Based Assessment of Performance Improvement for Aircraft Structural Parts with Thermal Spray Coatings. Journal of Superhard Materials, 41 (1), 53–59. doi: http://doi.org/10.3103/s1063457619010088
  • Wang, L., Chen, B., Zhang, C., Li, G. (2019). Experimental study on insulative properties of intumescent coating exposed to standard and nonstandard furnace curves. Fire and Materials, 43 (7), 782–793. doi: http://doi.org/10.1002/fam.2737
  • Maciulaitis, R., Grigonis, M., Malaiskiene, J. (2018). The impact of the aging of intumescent fire protective coatings on fire resistance. Fire Safety Journal, 98, 15–23. doi: http://doi.org/10.1016/j.firesaf.2018.03.007
  • Tian, N., Delichatsios, M. A., Zhang, J., Fateh, T. (2018). A methodology and a simple engineering fire performance model for Intumescent Fire Retardant coatings. Fire Safety Journal, 98, 120–129. doi: http://doi.org/10.1016/j.firesaf.2018.04.010
  • Pozdieiev, S., Nuianzin, O., Borsuk, O., Nedilko, I. (2021). Research of Integrity of Fire Insulation Cladding with Mineral Wool of Steel Beam under Fire Impact. IOP Conference Series: Materials Science and Engineering, 1021 (1), 012024. doi: http://doi.org/10.1088/1757­899x/1021/1/012024
  • Dreyer, J. A. H., Weinell, C. E., Dam­Johansen, K., Kiil, S. (2021). Review of heat exposure equipment and in­situ characterisation techniques for intumescent coatings. Fire Safety Journal, 121, 103264. doi: http://doi.org/10.1016/j.firesaf.2020.103264
  • Lucherini, A., Giuliani, L., Jomaas, G. (2018). Experimental study of the performance of intumescent coatings exposed to standard and non­standard fire conditions. Fire Safety Journal, 95, 42–50. doi: http://doi.org/10.1016/j.firesaf.2017.10.004
  • Roitman, V. M. (2006). Inzhenernye aspekty sobytii 11 sentyabrya 2001 goda v Nyu­Iorke pri atake terroristami bashen Vsemirnogo torgovogo tsentra. Globalnaya bezopasnost, 3, 30–35.
  • De Souza, R. C. S., Andreini, M., La Mendola, S., Zehfuß, J., Knaust, C. (2019). Probabilistic thermo­mechanical finite element analysis for the fire resistance of reinforced concrete structures. Fire Safety Journal, 104, 22–33. doi: http://doi.org/10.1016/j.firesaf.2018.12.005
  • Rastorguev, B. S., Plotnikov, A., Khusnutdinov, D. Z. (2007). Proektirovanie zdanii i sooruzhenii pri avariinykh vzryvnykh vozdeistviyakh. Izdatelstvo Assotsiatsii stroitelnykh vuzov, 154.
  • Pershakov, V. M., Barabash, M. S., Bieliatynskyi, A. O., Lysnytska, K. M. (2015). Problemy protydii konstruktsii prohresuiuchomu obvalenniu budivel ta sporud. Kyiv, 456.
  • Manco Rivera, M. R., Vaz, M. A., Cyrino, J. C. R., Landesmann, A. (2021). A study on the use of fireproof protection in offshore topside steel structures subject to localised fires. Marine Systems & Ocean Technology, 16 (2), 55–68. doi: http://doi.org/10.1007/s40868­021­00102­x
  • Bolina, F. L., Prager, G. L., Rodrigues, E., Tutikian, B. F. (2015). Evaluation of fire resistance of massive reinforced concrete walls. Ambiente Construído, 15 (4), 291–305. doi: http://doi.org/10.1590/s1678­86212015000400051
  • Lucherini, A., Maluk, C. (2019). Assessing the onset of swelling for thin intumescent coatings under a range of heating conditions. Fire Safety Journal, 106, 1–12. doi: http://doi.org/10.1016/j.firesaf.2019.03.014
  • Zeng, Y., Weinell, C. E., Dam­Johansen, K., Ring, L., Kiil, S. (2020). Comparison of an industrial­ and a laboratory­scale furnace for analysis of hydrocarbon intumescent coating performance. Journal of Fire Sciences, 38 (3), 309–329. doi: http://doi.org/10.1177/0734904120902852
  • Mariappan, T. (2016). Recent developments of intumescent fire protection coatings for structural steel: A review. Journal of Fire Sciences, 34 (2), 120–163. doi: http://doi.org/10.1177/0734904115626720
  • Zavyalov, D. E. (2013). Povyshenie effektivnosti ognezaschitnykh vspuchivayuschikhsya kompozitsii. Saint Petersburg, 118.
  • Cirpici, B. K., Wang, Y. C., Rogers, B. (2016). Assessment of the thermal conductivity of intumescent coatings in fire. Fire Safety Journal, 81, 74–84. doi: http://doi.org/10.1016/j.firesaf.2016.01.011
  • Gillet, M., Perez, L., Autrique, L. (2019). A model based predictive tool for fire safety intumescent coatings design. Fire Safety Journal, 110, 102908. doi: http://doi.org/10.1016/j.firesaf.2019.102908
  • Novak, S. V., Drizhd, V. L., Dobrostan, O. V. (2018). Analysis of modern european methods of evaluation of fireproof ability of fireproof materials for building constructions. Naukovyi visnyk: tsyvilnyi zakhyst ta pozhezhna bezpeka, 5 (1), 74–85.
  • Michel, M. A., Tutikian, B. F., Ortolan, V., Oliveira, M. L. S., Sampaio, C. H., Gómez P, L., Silva, L. F. O. (2019). Fire resistance performance of concrete­PVC panels with polyvinyl chloride (PVC) stay in place (SIP) formwork. Journal of Materials Research and Technology, 8 (5), 4094–4107. doi: http://doi.org/10.1016/j.jmrt.2019.07.018
  • Michel Murillo, A., Valery Abisambra, G., Aura Acosta, P., Claudia Quesada, Q., Tutikian, B. F., Ehrenbring, H. Z. (2021). Comparison of the fire resistance behaviour of structural insulated panels with expanded polystyrene core treated with intumescent coating. Journal of Materials Research and Technology, 12, 1958–1969. doi: http://doi.org/10.1016/j.jmrt.2021.03.079
  • Zhang, T., Zhang, Y., Xiao, Z., Yang, Z., Zhu, H., Ju, J. W., Yan, Z. (2019). Development of a novel bio­inspired cement­based composite material to improve the fire resistance of engineering structures. Construction and Building Materials, 225, 99–111. doi: http://doi.org/10.1016/j.conbuildmat.2019.07.121
  • Beh, J. H., Yew, M. C., Saw, L. H. (2020). Development of lightweight fire resistant sandwich panel. IOP Conference Series: Earth and Environmental Science, 476 (1), 012031. doi: http://doi.org/10.1088/1755­1315/476/1/012031
  • Shepel, S. V., Wakili, K. G., Hugi, E. (2012). Investigation of heat transfer in gypsum plasterboard exposed to fire for three nominal fire scenarios. Journal of Fire Sciences, 30 (3), 240–255. doi: http://doi.org/10.1177/0734904111433265
  • Medri, V., Papa, E., Mazzocchi, M., Laghi, L., Morganti, M., Francisconi, J., Landi, E. (2015). Production and characterization of lightweight vermiculite/geopolymer­based panels. Materials & Design, 85, 266–274. doi: http://doi.org/10.1016/j.matdes.2015.06.145
  • Gulіda, E. M., Renkas, A. A. (2012). The fire­resistant of concreteslabs in residential and administrative buildings. Problemy pozharnoi bezopasnosti, 32, 62–73.
  • Strakhov, V. L., Krutov, A. M., Davydkin, N. F. (2000). Ognezaschita stroitelnykh konstruktsii. Moscow: TIMR, 433.
  • Chernukha, A., Teslenko, A., Kovalov, P., Bezuglov, O. (2020). Mathematical Modeling of Fire­Proof Efficiency of Coatings Based on Silicate Composition. Materials Science Forum, 1006, 70–75. doi: http://doi.org/10.4028/www.scientific.net/msf.1006.70
  • Skorodumova, O., Tarakhno, O., Chebotaryova, O., Hapon, Y., Emen, F. M. (2020). Formation of Fire Retardant Properties in Elastic Silica Coatings for Textile Materials. Materials Science Forum, 1006, 25–31. doi: http://doi.org/10.4028/www.scientific.net/msf.1006.25
  • Kireev, A., Tregubov, D., Safronov, S., Saveliev, D. (2020). Study Insulating and Cooling Properties of the Material on the Basis of Crushed Foam Glass and Determination of its Extinguishing Characteristics with the Attitude to Alcohols. Materials Science Forum, 1006, 62–69. doi: http://doi.org/10.4028/www.scientific.net/msf.1006.62
  • Puri, R. G., Khanna, A. S. (2016). Intumescent coatings: A review on recent progress. Journal of Coatings Technology and Research, 14 (1), 1–20. doi: http://doi.org/10.1007/s11998­016­9815­3
  • Xu, Q., Li, G.­Q., Jiang, J., Wang, Y. C. (2018). Experimental study of the influence of topcoat on insulation performance of intumescent coatings for steel structures. Fire Safety Journal, 101, 25–38. doi: http://doi.org/10.1016/j.firesaf.2018.08.006
  • Li, G.­Q., Han, J., Lou, G.­B., Wang, Y. C. (2016). Predicting intumescent coating protected steel temperature in fire using constant thermal conductivity. Thin­Walled Structures, 98, 177–184. doi: http://doi.org/10.1016/j.tws.2015.03.008
  • Tsoi, A. A., Demekhin, F. V. (2016). Criteria of model of fire rating of flame­retardant coating for steel structures in the conditions of hydrocarbon jet fire. Mezhdunarodnyi nauchno­issledovatelskii zhurnal, 6–2 (48), 161–165.
  • Holodnov, O. I., Antoshyna, T. V., Otrosh, Yu. A. (2017). About necessity of calculation of buildingswith steel framework on thermalactions. Zbirnyk naukovykh prats Ukrainskoho instytutu stalevykh konstruktsii imeni V. M. Shymanovskoho, 20, 65–84.
  • Gravit, M., Gumerova, E., Bardin, A., Lukinov, V. (2017). Increase of fire resistance limits of building structures of oil­and­gas complex under hydrocarbon fire. Energy Management of Municipal Transportation Facilities and Transport. Cham: Springer, 818–829. doi: http://doi.org/10.1007/978­3­319­70987­1_87
  • Imran, M., Liew, M. S., Nasif, M. S., Niazi, U. M., Yasreen, A. (2017). Hazard Assessment Studies on Hydrocarbon Fire and Blast: An Overview. Advanced Science Letters, 23 (2), 1243–1247. doi: http://doi.org/10.1166/asl.2017.8349
  • Abramov, I. V., Gravit, M. V., Gumerova, E. I. (2018). Increase in the fire resistance limits of ship and building structures with hydrocarbon fire. Gazovaya promyshlennost, 5 (768), 106–115.
  • Lucherini, A., Maluk, C. (2019). Intumescent coatings used for the fire­safe design of steel structures: A review. Journal of Constructional Steel Research, 162, 105712. doi: http://doi.org/10.1016/j.jcsr.2019.105712
  • Sobur, S. V. (2008). Ognezaschita materialov i konstruktsii. Moscow: Izdatelstvo "PozhKniga", 216.
  • Wang, L., Wang, Y., Zeng, W. (2021). An experimental study on crack and debonding of intumescent coatings and their effects on temperature development of steel elements. Fire Safety Journal, 122, 103325. doi: http://doi.org/10.1016/j.firesaf.2021.103325
  • Yew, M. C., Ramli Sulong, N. H. (2012). Fire­resistive performance of intumescent flame­retardant coatings for steel. Materials & Design, 34, 719–724. doi: http://doi.org/10.1016/j.matdes.2011.05.032
  • Wang, L. L., Wang, Y. C., Li, G. Q., Zhang, Q. Q. (2020). An experimental study of the effects of topcoat on aging and fire protection properties of intumescent coatings for steel elements. Fire Safety Journal, 111, 102931. doi: http://doi.org/10.1016/j.firesaf.2019.102931
  • Fateh, T., Guillaume, E., Joseph, P. (2017). An experimental study of the thermal performance of a novel intumescent fire protection coating. Fire Safety Journal, 92, 132–141. doi: http://doi.org/10.1016/j.firesaf.2017.05.021
  • Yamschikova, S. A. (2009). Povyshenie ognezaschitnoi sposobnosti vspuchivayuschikhsya pokrytii dlya obektov neftegazovoi otrasli. Ufa, 171.
  • Vakhitova, L., Taran, N., Bessarabov, V., Drizhd, V., Pridatko, S., Prudchenko, A. (2018). Development of fire retardant coating for the conditions of hydrocarbon fire with improved rheological characteristics. Journal of Donetsk Mining Institute, 1 (42), 103–115. doi: http://doi.org/10.31474/1999­981x­2018­1­103­115
  • Beh, J. H., Yew, M. C., Yew, M. K., Saw, L. H. (2019). Fire Protection Performance and Thermal Behavior of Thin Film Intumescent Coating. Coatings, 9 (8), 483. doi: http://doi.org/10.3390/coatings9080483
  • Wang, Y., Zhao, J. (2019). Facile preparation of slag or fly ash geopolymer composite coatings with flame resistance. Construction and Building Materials, 203, 655–661. doi: http://doi.org/10.1016/j.conbuildmat.2019.01.097
  • M. Beraldo, C. H., da S. Silveira, M. R., F. Baldissera, A., Ferreira, C. A. (2019). A new benzoxazine­based intumescent coating for passive protection against fire. Progress in Organic Coatings, 137, 105321. doi: http://doi.org/10.1016/j.porgcoat.2019.105321
  • Inerhunwa, I., Wang, Y. C., Su, M. (2019). Reliability analysis of intumescent coating protected steel members under the standard fire condition. Fire Safety Journal, 104, 43–56. doi: http://doi.org/10.1016/j.firesaf.2018.12.003
  • Pignatta e Silva, V. (2005). Determination of the steel fire protection material thickness by an analytical process – a simple derivation. Engineering Structures, 27 (14), 2036–2043. doi: http://doi.org/10.1016/j.engstruct.2005.05.018
  • ENV 13381­4: 2002 Test methods for determining the contribution to the fire resistance of structural members – Part 4: Applied protection to steel members (2002). Available at: https://standards.iteh.ai/catalog/standards/cen/54633070­6755­4b78­8818­bb6d3fa92eb7/env­13381­4­2002
  • Alcaíno, P., Santa­María, H., Magna­Verdugo, C., López, L. (2020). Experimental fast­assessment of post­fire residual strength of reinforced concrete frame buildings based on non­destructive tests. Construction and Building Materials, 234, 117371. doi: http://doi.org/10.1016/j.conbuildmat.2019.117371
  • Nair, A., Salem, O. (Sam). (2020). Experimental determination of the residual compressive strength of concrete columns subjected to different fire durations and load ratios. Journal of Structural Fire Engineering, 11 (4), 529–543. doi: http://doi.org/10.1108/jsfe­10­2019­0034
  • Kuehnen, R., Youssef, M., El­Fitiany, S. (2020). Performance­based design of RC beams using an equivalent standard fire. Journal of Structural Fire Engineering, 12 (1), 98–109. doi: http://doi.org/10.1108/jsfe­02­2020­0008
  • Bai, L. L., Song, T. (2012). Failure Analysis of Reinforced Concrete Columns after High Temperature. Applied Mechanics and Materials, 157­158, 1578–1581. doi: http://doi.org/10.4028/www.scientific.net/amm.157­158.1578
  • Novak, S., Drizhd, V., Dobrostan, O., Maladyka, L. (2019). Influence of testing samples' parameters on the results of evaluating the fireprotective capability of materials. Eastern­European Journal of Enterprise Technologies, 2 (10 (98)), 35–42. doi: http://doi.org/10.15587/1729­4061.2019.164743
  • De Silva, D., Bilotta, A., Nigro, E. (2019). Experimental investigation on steel elements protected with intumescent coating. Construction and Building Materials, 205, 232–244. doi: http://doi.org/10.1016/j.conbuildmat.2019.01.223
  • Nadjai, A., Petrou, K., Han, S., Ali, F. (2016). Performance of unprotected and protected cellular beams in fire conditions. Construction and Building Materials, 105, 579–588. doi: http://doi.org/10.1016/j.conbuildmat.2015.12.150
  • Novak, S. V. (2016). Parameters reasoning of samples for experimental determination of the temperature of the steel plates that are fire­retardant coating in conditions of fire exposure under standard temperature fire regime. Naukovyi visnyk: Tsyvilnyi zakhyst ta pozhezhna bezpeka, 2, 18–24.
  • Novak, S. V., Krukovskyi, P. H., Perepylytsia, M. S. (2016). Determination of the temperature distribution in steel construction in terms of fire exposure calculation methods. Naukovyi visnyk: tsyvilnyi zakhyst ta pozhezhna bezpeka, 1, 9–15.
  • Lakhani, H., Kamath, P., Bhargava, P., Sharma, U., Reddy, G. (2013). Thermal Analysis of Reinforced Concrete Structural Elements. Journal of Structural Fire Engineering, 4 (4), 227–244. doi: http://doi.org/10.1260/2040­2317.4.4.227
  • Garlińska, U., Michalak, P., Popielarczyk, T. (2015). Szacowanie możliwości utraty nośności konstrukcji budowlanej w warunkach pożaru. Bezpieczeństwo i Technika Pożarnicza, 39 (3), 59–66. doi: http://doi.org/10.12845/bitp.39.3.2015.5
  • Biskupska, N., Szymkuć, W. (2016). Towards the simplified modelling of thermal and mechanical response of steel tubular columns exposed to localized fire. Modern Building Materials, Structures and Techniques.
  • Zárate, L. G., Lara, H. E., Cordero, M. E., Kozanoglu, B. (2014). Infrared thermography and CFD analysis of hydrocarbon jet fires. Chemical Engineering Transactions, 39, 1357–1362. doi: http://doi.org/10.3303/CET1439227
  • Golodnov, A. I., Kudryashov, V. A., Polevoda, I. I., Otrosh, Yu. A., Tkachuk, I. A., Seminog, N. N., Drobysh, A. S. (2015). Sopostavitelnaya otsenka ognestoikosti zhelezobetonnykh mnogopustotnykh plit s ispolzovaniem standartov Belarusi, Ukrainy, Evropeiskogo Soyuza, a takzhe raschetnykh metodov. Vestnik Universiteta grazhdanskoi zaschity MCHS Belarusi, 1 (21), 30–39.
  • Džolev, I., Cvetkovska, M., Radonjanin, V., Lađinović, Đ., Laban, M. (2018). Modelling approach of structural fire performance. Book of proceedings, 17–24.
  • Pozdieiev, S. V., Otrosh, Yu. A., Demeshok, V. V., Fedchenko, I. V. (2016). Rozrakhunkovyi metod otsinky vohnestiikosti plyty perekryttia. Promyslove budivnytstvo ta inzhenerni sporudy, 2, 28–33.
  • Pozdieiev, S. V., Otrosh, Yu. A., Omelchenko, A. M., Kropyva, M. O. (2015). Temperature fields interpretation method in the cross section of reinforced concrete beams. Zbirnyk naukovykh prats Poltavskoho natsionalnoho tekhnichnoho universytetu im. Yu. Kondratiuka. Seriia: Haluzeve mashynobuduvannia, budivnytstvo, 2, 70–78.
  • Pozdeev, S. V. (2011). Verification of results of the specified calculation method of determination of limits of fire­resistance of reinforced concrete constructions. Problemy pozharnoi bezopasnosti, 29, 141–148.
  • Alos­Moya, J., Paya­Zaforteza, I., Garlock, M. E. M., Loma­Ossorio, E., Schiffner, D., Hospitaler, A. (2014). Analysis of a bridge failure due to fire using computational fluid dynamics and finite element models. Engineering Structures, 68, 96–110. doi: http://doi.org/10.1016/j.engstruct.2014.02.022
  • Džolev, I., Radujković, A., Cvetkovska, M., Lađinović, Đ., Radonjanin, V. (2016). Fire analysis of a simply supported steel beam using Opensees and Ansys Workbench. 4th International Conference Contemporary Achievements in Civil Engineering. Subotica, 315–322. doi: http://doi.org/10.14415/konferencijagfs2016.031
  • Łukomski, M., Turkowski, P., Roszkowski, P., Papis, B. (2017). Fire Resistance of Unprotected Steel Beams – Comparison between Fire Tests and Calculation Models. Procedia Engineering, 172, 665–672. doi: http://doi.org/10.1016/j.proeng.2017.02.078
  • Lin, S., Huang, Z., Fan, M. (2015). The effects of protected beams and their connections on the fire resistance of composite buildings. Fire Safety Journal, 78, 31–43. doi: http://doi.org/10.1016/j.firesaf.2015.08.003
  • Lazarevska, M., Cvetkovska, M., Knežević, M., Trombeva Gavriloska, A., Milanovic, M., Murgul, V., Vatin, N. (2014). Neural Network Prognostic Model for Predicting the Fire Resistance of Eccentrically Loaded RC Columns. Applied Mechanics and Materials, 627, 276–282. doi: http://doi.org/10.4028/www.scientific.net/amm.627.276
  • Zhang, X., Xiao, Y., Kunnath, S. K. (2015). State of the art and prospect of research on fire resistance behavior of reinforced concrete columns. Journal of Natural Disasters, 24 (3), 120–131. doi: http://doi.org/10.13577/j.jnd.2015.0316
  • EN 1992­1­2:2004 Eurocode 2: Design of concrete structures – Part 1­2: General rules – Structural fire design (2004). Available at: https://www.phd.eng.br/wp­content/uploads/2015/12/en.1992.1.2.2004.pdf
  • EN 1363­2: 1999 Fire resistance tests – Part 2: Alternative and additional procedures (1999). Availablr at: https://standards.iteh.ai/catalog/standards/cen/2c26aa21­abe7­4d96­96a2­eb8fbb4919e0/en­1363­2­1999
  • Ng, Y. H., Zope, I. S., Dasari, A., Tan, K. H. (2020). Correlating the Performance of a Fire­Retardant Coating across Different Scales of Testing. Polymers, 12 (10), 2271. doi: http://doi.org/10.3390/polym12102271
  • Paik, J. K., Czujko, J. (2012). Engineering and design disciplines associated with management of hydrocarbon explosion and fire risks in offshore oil and gas Facilities. doi: http://doi.org/10.5957/smc­2012­a24
  • Paik, J. K., Czujko, J. (2011). Assessment of hydrocarbon explosion and fire risks in offshore installations: recent advances and future trends. The IES Journal Part A: Civil & Structural Engineering, 4 (3), 167–179. doi: http://doi.org/10.1080/19373260.2011.593345
  • Paik, J. K., Kim, B. J., Jeong, J. S., Kim, S. H., Jang, Y. S., Kim, G. S. et. al. (2010). CFD simulations of gas explosion and fire actions. Ships and Offshore Structures, 5 (1), 3–12. doi: http://doi.org/10.1080/17445300902872028
  • Uribe, S., Zárate, L., Suo­Anttila, A., Cordero, M. E., Smith, J. D. (2020). Improvement in the prediction of gasoline pool fire behaviour: CFD modelling and validation. Journal of Loss Prevention in the Process Industries, 68, 104317. doi: http://doi.org/10.1016/j.jlp.2020.104317
  • Payá­Zaforteza, I., Garlock, M. E. M. (2010). A 3D numerical analysis of a typical steel highway overpass bridge under a hydrocarbon fire. Structures in Fire – Proceedings of the Sixth International Conference, SiF'10, 11–18.
  • ZVT­Tunnel – Zusatzliche techniche Vertragsbedingungen und Richtlinien fur den Bau von Strassentunneln. Tel. 1,2,4. Ausgabe, 1995 und 2000.
  • Subota, A. V., Semerak, M. M., Stokaliuk, O. V. (2014). Definition and study of the temperature field in the elements of metal structure in hydrogen combustion temperature mode. Pozhezhna bezpeka, 24, 120–123.
  • Yakymenko, O. P. (2012). Pidvyshchennia vohnestiikosti zalizobetonnykh oprav tunelnykh sporud. Kyiv, 141.
  • Enaleev, R. Sh., Telyakov, E. Sh., Tuchkova, O. A., Kachalkin, A. V., Osipova, L. E. (2010). Ognestoikost elementov stroitelnykh konstruktsii pri pozharakh v neftegazovom komplekse. Butlerovskie soobscheniya, 19 (3), 66–75.
  • Tuchkova, O. A. (2011). Gradientno­temperaturnyi kriterii ognestoikosti betonnykh konstruktsii pri pozharakh v khimicheskoi otrasli promyshlennosti. Kazan, 117.
  • Calabrese, L., Cattani, L., Vocale, P. (2014). Parameter estimation approach applied to the characterization of an intumescent fire retardant paint. JP Journal of Heat and Mass Transfer, 9 (2), 101–116.
  • Zehfuß, J., Sander, L., Schaumann, P., Weisheim, W. (2018). Thermische Materialeigenschaften von Brandschutzmaterialien für Naturbrandbeanspruchungen. Bautechnik, 95 (8), 535–546. doi: http://doi.org/10.1002/bate.201800033
  • Weisheim, W., Schaumann, P., Sander, L., Zehfuß, J. (2020). Numerical model for the fire protection performance and the design of intumescent coatings on structural steel exposed to natural fires. Journal of Structural Fire Engineering, 11 (1), 33–50. doi: http://doi.org/10.1108/jsfe­01­2019­0004
  • Yasir, M., Ahmad, F., Yusoff, P. S. M. M., Ullah, S., Jimenez, M. (2019). Latest trends for structural steel protection by using intumescent fire protective coatings: a review. Surface Engineering, 36 (4), 334–363. doi: http://doi.org/10.1080/02670844.2019.1636536
  • Wang, L., Dong, Y., Zhang, C., Zhang, D. (2015). Experimental Study of Heat Transfer in Intumescent Coatings Exposed to Non­Standard Furnace Curves. Fire Technology, 51 (3), 627–643. doi: http://doi.org/10.1007/s10694­015­0460­7
  • STB 11.03.02­2010. Fire safety standards system. Fire protection. General technical requirements and test methods (2010). Available at: https://files.stroyinf.ru/Index2/1/4293725/4293725240.htm
  • GOST 28574­90 Zaschita ot korrozii v stroitelstve. Konstruktsii betonnye i zhelezobetonnye. Metody ispytanii adgezii zaschitnykh pokrytii. Vved. 01.01.1991 (2004). Moscow: Standartinform, 7.
  • GOST 15140­78 Materialy lakokrasochnye. Metody opredeleniya adgezii. Vved. 01.01.1979 (1990). Moscow: Gosudarstvennyi komitet SSSR po standartam, 12.
  • ETAG No. 018­1:2004 Guide for the European technical approval of fire protective products – Part 1: General (2004). Available at: https://www.itb.pl/g/f/NDYz
  • ETAG No. 018­2:2013 Guide for the European technical approval of fire protective products – Part 2: Reactive coatings for fire protection of steel elements (2013). Available at: https://www.nlfnorm.cz/en/ehn/6383
  • ETAG No. 018­3:2013 Guide for the European technical approval of fire protective products – Part 3: Renderings and rendering kits intended for fire resisting applications. Available at: https://www.itb.pl/g/f/NDY1
  • ETAG No. 018­4:2011 Guide for the European technical approval of fire protective products – Part 4: Fire protective board, slab and mat products and kits. Available at: https://www.eota.eu/sites/default/files/uploads/ETAGs/etag­018­part4­ec­version­december­2011.pdf
  • GOST 9.401–91. Pokrytiya lakokrasochnye. Obschie trebovaniya i metody uskorennykh ispytanii na stoikost k vozdeistviyu klimaticheskikh faktorov. Data vvedeniya 1992­07­01 (1991). Moscow: MKHINP, 55.
  • Jimenez, M., Bellayer, S., Revel, B., Duquesne, S., Bourbigot, S. (2013). Comprehensive Study of the Influence of Different Aging Scenarios on the Fire Protective Behavior of an Epoxy Based Intumescent Coating. Industrial & Engineering Chemistry Research, 52 (2), 729–743. doi: http://doi.org/10.1021/ie302137g
  • Zybina, O., Gravit, M., Stein, Y. (2017). Influence of carbon additives on operational properties of the intumescent coatings for the fire protection of building constructions. IOP Conference Series: Earth and Environmental Science, 90, 012227. doi: http://doi.org/10.1088/1755­1315/90/1/012227
  • Ustinov, A., Zybina, O., Tomakhova, A., Pavlov, S. (2018). The enhancement of operating properties of intumescent fire­protective compositions. MATEC Web of Conferences, 245, 11008. doi: http://doi.org/10.1051/matecconf/201824511008
  • Zubielewicz, M., Langer, E., Królikowska, A. (2021). Trends in the development of intumescent paints for the protection of steel structures and new related with them expectations. Ochrona Przed Korozja, 1 (7), 4–12. doi: http://doi.org/10.15199/40.2021.7.1
  • Wang, L. L., Wang, Y. C., Li, G. Q. (2013). Experimental study of hydrothermal aging effects on insulative properties of intumescent coating for steel elements. Fire Safety Journal, 55, 168–181. doi: http://doi.org/10.1016/j.firesaf.2012.10.004
  • Wang, L. L., Wang, Y. C., Yuan, J. F., Li, G. Q. (2012). Thermal conductivity of intumescent coating char after accelerated aging. Fire and Materials, 37 (6), 440–456. doi: http://doi.org/10.1002/fam.2137
  • Wang, J. (2016). The protective effects and aging process of the topcoat of intumescent fire­retardant coatings applied to steel structures. Journal of Coatings Technology and Research, 13 (1), 143–157. doi: http://doi.org/10.1007/s11998­015­9733­9
  • Roberts, T. A., Shirvill, L. C., Waterton, K., Buckland, I. (2010). Fire resistance of passive fire protection coatings after long­term weathering. Process Safety and Environmental Protection, 88 (1), 1–19. doi: http://doi.org/10.1016/j.psep.2009.09.003
  • Dong, Y., Wang, G., Su, Q. (2014). Influence of degree of polymerization of ammonium polyphosphate on anti­aging property of waterborne fire resistive coatings. Surface and Coatings Technology, 246, 71–76. doi: http://doi.org/10.1016/j.surfcoat.2014.03.009
  • Çırpıcı, B. K., Orhan, S. N., Kotan, T. (2019). Numerical modelling of heat transfer through protected composite structural members. Challenge Journal of Structural Mechanics, 5 (3), 96. doi: http://doi.org/10.20528/cjsmec.2019.03.003
  • Elliott, A., Temple, A., Maluk, C., Bisby, L. (2014). Novel Testing to Study the Performance of Intumescent Coatings under Non­Standard Heating Regimes. Fire Safety Science, 11, 652–665. doi: http://doi.org/10.3801/iafss.fss.11­652
  • Lucherini, A., Maluk, C. (2017). Novel test methods for studying the fire performance of thin intumescent coatings. Proceedings of 2nd International Fire Safety Symposium (IFireSS). Napoli, 565–572.
  • Li, G., Han, J., Wang, Y. C. (2017). Constant effective thermal conductivity of intumescent coatings: Analysis of experimental results. Journal of Fire Sciences, 35 (2), 132–155. doi: http://doi.org/10.1177/0734904117693857
  • Kolšek, J., Češarek, P. (2015). Performance­based fire modelling of intumescent painted steel structures and comparison to EC3. Journal of Constructional Steel Research, 104, 91–103. doi: http://doi.org/10.1016/j.jcsr.2014.10.008
  • Bozzoli, F., Mocerino, A., Rainieri, S., Vocale, P. (2018). Inverse heat transfer modeling applied to the estimation of the apparent thermal conductivity of an intumescent fire retardant paint. Experimental Thermal and Fluid Science, 90, 143–152. doi: http://doi.org/10.1016/j.expthermflusci.2017.09.006
  • Kraus, P., Mensinger, M., Tabeling, F., Schaumann, P. (2015). Experimental and Numerical Investigations of Steel Profiles with Intumescent Coating Adjacent to Space­Enclosing Elements in Fire. Journal of Structural Fire Engineering, 6 (4), 237–246. doi: http://doi.org/10.1260/2040­2317.6.4.237
  • Standard for Safety for Rapid Rise Fire Tests of Protection Materials for Structural Steel: ANSI/UL 1709 (2007). Available at: https://ua1lib.org/book/14973256/24a856
  • Standard Methods of Fire Endurance Tests of Building Construction and Materials: CAN/ULC­S101­04. Available at: https://www.scc.ca/en/standardsdb/standards/19257
  • Gong, J., Xiang, Q., Zhao, M. (2014). Laboratory Research on Composite Tunnel Fire­Retardant Coating. Materials and Manufacturing Processes, 30 (6), 699–705. doi: http://doi.org/10.1080/10426914.2014.941872
  • Zhang, Y., Wang, Y. C., Bailey, C. G., Taylor, A. P. (2012). Global modelling of fire protection performance of an intumescent coating under different furnace fire conditions. Journal of Fire Sciences, 31 (1), 51–72. doi: http://doi.org/10.1177/0734904112453566
  • Andronov, V., Pospelov, B., Rybka, E. (2016). Increase of accuracy of definition of temperature by sensors of fire alarms in real conditions of fire on objects. Eastern­European Journal of Enterprise Technologies, 4 (5 (82)), 38–44. doi: http://doi.org/10.15587/1729­4061.2016.75063
  • Maliarenko, V. A., Redko, A. F., Chaika, Yu. Y., Povolochko, V. B. (2001). Tekhnichna teplofizyka ohorodzhuiuchykh konstruktsii budivel ta sporud. Kharkiv: Rubikon, 280.
  • Kovalov, A. I. (2017). Justification of parameters of fire protective plaster of coating for protecting concrete structures. Naukovyi visnyk: tsyvilnyi zakhyst ta pozhezhna bezpeka, 1 (3), 20–27.
  • Krukovskii, P. G., Kovalev, A. I., CHernenko, K. A., Metel, M. A., Abramov, A. A. (2012). Modelling of thermal state and fire­resistance quality of hol­low core armoured concrete floors. Pozharnaya bezopasnost, 21, 85–94.
  • Kovalov, A., Otrosh, Y., Ostroverkh, O., Hrushovinchuk, O., Savchenko, O. (2018). Fire resistance evaluation of reinforced concrete floors with fire­retardant coating by calculation and experimental method. E3S Web of Conferences, 60, 00003. doi: http://doi.org/10.1051/e3sconf/20186000003
  • Kovalov, A., Konoval, V., Khmyrova, A., Dudko, K. (2019). Parameters for simulation of the thermal state and fire­resistant quality of hollow­core floors used in the mining industry. E3S Web of Conferences, 123, 01022. doi: http://doi.org/10.1051/e3sconf/201912301022
  • Kovalev, A. I. (2013). Opredelenie kharakteristiki ognezaschitnoi sposobnosti pokrytii zhelezobetonnykh perekrytii dlya razlichnykh temperaturnykh rezhimov pozhara. Pozhezhna bezpeka: teorіya і praktika, 13, 4–9.
  • Kovalev, A. I. (2013). Vliyanie parametrov modeli na tochnost opredeleniya teplofizicheskikh kharakteristik ognezaschitnogo pokrytiya. Pozhezhna bezpeka: teorіya і praktika, 14, 64–68.
  • Kovalev, A. I., Krukovskii, P. G., Kachkar, E. V. (2012). Opredelenie kharakteristik vspuchivayuschegosya ognezaschitnogo pokrytiya «Feniks STV» po dannym ispytanii na ognestoikost monolitnogo perekrytiya. Pozhezhna bezpeka: teorіya і praktika, 11, 43–51.
  • Kovalev, A. Y. (2012). Evaluation of fire resistance rating of multi­hollow ferroconcrete floors with fire­retardant coatings by experiment­calculation method. Naukovyi visnyk UkrNDIPB, 2, 28–34.
  • Kovalov, A. І., Otrosh, Yu. A., Danіlіn, O. M. (2019). Experimental studies of fire resistance of reinforced concrete floors with fire protection system. Problemy pozharnoi bezopasnosti, 45, 73–78.
  • Alifanov, O. M. (1988). Obratnye zadachi teploobmena. Moscow: Mashinostroenie, 280.
  • Alifanov, O. M., Artyukhin, E. A. (1988). Ekstremalnye metody resheniya nekorrektnykh zadach i ikh prilozheniya k obratnym zadacham teploobmena. Moscow: Nauka, 285.
  • Artyukhin, E. A. (1975). Opredelenie koeffitsienta temperaturoprovodnosti po dannym eksperimenta. Inzhenerno­fizicheskii zhurnal, 29 (1), 87–90.
  • Krukovskii, P. G. (1998). Obratnye zadachi teplomassoperenosa (obschii inzhenernyi podkhod). Kyiv: Institut tekhnicheskoi teplofiziki NAN Ukrainy, 218.
  • Alifanov, O. M., Vabischevich, P. N., Mikhailov, V. V., Nenarokomov, A. V., Polezhaev, Yu. V., Reznik, S. V. (2001). Osnovy identifikatsii i proektirovaniya teplovykh protsessov i sistem. Moscow: Logos, 400.
  • Kozdoba, L. A., Krukovskii P. G. (1982). Metody resheniya obratnykh zadach teploperenosa. Kyiv: Nauka i tekhnicheskii progress, 360.
  • Faddeev, D. K., Faddeeva, V. N. (1963). Vychislitelnye metody lineinoi algebry. Vol. 960. Fizmatgiz.
  • Krukovskii, P. G. (1994). Universalnyi programmno­metodicheskii podkhod k resheniyu obratnykh zadach teplomassoperenosa (programma FRIEND). Identifikatsiya dinamicheskikh sistem i obratnye zadachi. Saint Petersburg, 1.
  • Kozdoba, L. A. (1992). Vychislitelnaya teplofizika. Kyiv: Naukova dumka, 224.
  • Bek, Dzh., Blakuell, B. (1989). Nekorrektnye obratnye zadachi teploprovodnosti. Moscow: Mir, 312.
  • Berkovskii, B. M., Nogotov, E. F. (1976). Raznostnye metody issledovaniya zadach teploobmena. Minsk: Nauka i tekhnika, 141.
  • Krukovskii, P. G. (2003). Raschetno­eksperimentalnyi podkhod k analizu protsessov teplomassoobmena (metodologiya i primery primeneniya). Promyshlennaya teplotekhnika, 25 (4), 396–398.
  • DSTU, B. (2007). 1.1­14: 2007 (EN 1365­4: 1999, NEQ). Kolony. Metod vyprobuvannia na vohnestiikist (2007). Nakaz Ministerstva rehionalnoho rozvytku ta budivnytstva Ukrainy No. 63. 22.06.2007. Kyiv: Minrehionbud Ukrainy.
  • DSTU B V.1.1–4–98*. Zakhyst vid pozhezhi. Budivelni konstruktsii. Metody vyprobuvan na vohnestiikist. Zahalni vymohy. Chynnyi vid 1998­10­28. (2005). Vyd. Derzhbud Ukrainy, 18.
  • Kovalov, A. І., Otrosh, Yu. A., Kosse, A. G., Chernenko, O. M. (2020). Dependence of the accuracy of determining the thermophysical characteristics of fire retardant coatings on the parameters of the model. Problemy pozharnoi bezopasnosti, 48, 63–70.
  • Kovalov, A., Otrosh, Y., Surianinov, M., Kovalevska, T. (2019). Experimental and Computer Researches of Ferroconcrete Floor Slabs at High­Temperature Influences. Materials Science Forum, 968, 361–367. doi: http://doi.org/10.4028/www.scientific.net/msf.968.361
  • Kovalev, A. I. (2012). Vliyanie pogreshnostei v izmerenii temperatur na tochnost opredeleniya teplofizicheskikh kharakteristik pokrytii monolitnykh zhelezobetonnykh perekritii. Pozhezhna bezpeka: teorіya і praktika, 12, 41–45.
  • Kovalov, A. I., Otrosh, Y. A., Kovalevska, T. M., Safronov, S. O. (2019). Methodology for assessment of the fire­resistant quality of reinforced­concrete floors protected by fire­retardant coatings. IOP Conference Series: Materials Science and Engineering, 708 (1), 012058. doi: http://doi.org/10.1088/1757­899x/708/1/012058
  • Kovalov, A. I. (2017). The Influence of Random Errors in the Measurement of Temperatures on the Inaccuracy of Determination of Thermophysical Characteristics of Coatings of Rein­forced Concrete Floors. Problemi pozharnoi bezopasnosty, 41, 87–91.
  • Kovalev, A. I., Krukovskii, P. G., Abramov, A. A. (2012). Analiz vliyaniya oshibok izmereniya temperatur na pogreshnost opredeleniya teplofizicheskikh i ognezaschitnykh kharakteristik pokrytii zhelezobetonnykh perekritii. Pozhezhna bezpeka: teorіya і praktika, 10, 66–72.
  • Kovalov, A. I., Kachkar, Ye. V., Zobenko, N. V., Tyshchenko, O. M. (2014). Osoblyvosti zastosuvannia pokryttiv metalevykh konstruktsii pry riznykh temperaturnykh rezhymakh pozhezhi. Pozhezhna bezpeka: teoriia i praktyka, 16, 135–139.
  • Kovalov, A. I., Otrosh, Yu. A., Tomenko, V. I., Danilin, O. M., Bezuhla, Yu. S., Karpets, K. M. (2020). Estimation of the fire­protective capacity of reactive coatings of steel structures. Problemy nadzvychainykh sytuatsii, 2 (32), 44–55.
  • Kovalev, A. I., Dashkovskii, V. Iu. (2014). Research of the Fireproof Capability of "Amotherm Steel Wb" Coating for Metal Constructions Protection Using an Experiment­Calculation Method. Bezpieczeństwo i Technika Pożarnicza, 35, 107–113. doi: http://doi.org/10.12845/bitp.35.3.2014.9
  • Kovalev, A. I., Zobenko, N. V. (2016). Testing the Accuracy of Designating the Parameters of Intumescent Coatings of Metal Constructions. Bezpieczeństwo i Technika Pożarnicza, 43, 45–50. doi: http://doi.org/10.12845/bitp.43.3.2016.4
  • Kovalov, A. I., Zobenko, N. V. (2016). Preliminary assessment technique of coating flame retardant capacity for steel structures under hydrocarbon firetemperature conditions. Naukovyi visnyk: tsyvilnyi zakhyst ta pozhezhna bezpeka, 1, 59–65.
  • Kovalov, A., Slovinskyi, V., Udianskyi, M., Ponomarenko, I., Anszczak, M. (2020). Research of Fireproof Capability of Coating for Metal Constructions Using Calculation­Experimental Method. Materials Science Forum, 1006, 3–10. doi: http://doi.org/10.4028/www.scientific.net/msf.1006.3
  • Kovalov, A. I., Zobenko, N. V., Otrosh, Yu. A., Khmyrov, I. M., Danilin, O. M. (2018). Accuracy of determination of parameters of coatings of steel structures under conditions of the temperature regime of a hydrocarbon fire. Problemi pozharnoi bezopasnosty, 43, 73–79.
  • Kovalov, A. I., Vedula, S. A., Hrushovinchuk, O. V. (2017). Peculiarities and problems of determination of the predicted durability term of steel constructions coatings. Visnyk Pryazovskoho derzhavnoho tekhnichnoho universytetu. Seriia: Tekhnichni nauky, 34, 232–238.
  • Nuianzin, V. M., Kovalov, A. I., Vedula, S. A. (2016). Experimental researchesof influence of climatic factors on flame retardant ability of coatings for steel structures. Visnyk KrNU imeni Mykhaila Ostrohradskoho, 5, 70–75.
  • Kovalov, A. I., Otrosh, Yu. A., Danilin, O. M., Aleksieieva, O. S., Khmyrov, I. M. (2018). Method of assessment of fire fighting safety coatings of steel constructions under the influence of climatic factors. Problemi pozharnoi bezopasnosty, 44, 49–56.
  • Kovalov, A. I., Otrosh, Y. A., Vedula, S., Danilin, O. M., Kovalevska, T. M. (2019). Parameters of fire­retardant coatings of steel constructions under the influence of climatic factors. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3, 46–53. doi: http://doi.org/10.29202/nvngu/2019­3/9
  • DSTU­N B EN 1993­1­2:2010 "Yevrokod 3. Proektuvannia stalevykh konstruktsii. Chastyna 1­2. Zahalni polozhennia. Rozrakhunok konstruktsii na vohnestiikist (EN 1993­1­2:2005,IDT)" (2010). Available at: http://online.budstandart.com/ua/catalog/doc­page?id_doc=26637
  • DBN V.1.1­7:2016 Pozhezhna bezpeka ob`yektiv budivnytstva. Zahalni vymohy. Chynnyi vid 2017­06­01 (2017). Vyd. Ukrainskyi naukovo­doslidnyi instytut tsyvilnoho zakhystu Ukr­NDITsZ, 35.
  • Kovalov, A., Otrosh, Y., Chernenko, O., Zhuravskij, M., Anszczak, M. (2021). Modeling of Non­Stationary Heating of Steel Plates with Fire­Protective Coatings in Ansys under the Conditions of Hydrocarbon Fire Temperature Mode. Materials Science Forum, 1038, 514–523. doi: http://doi.org/10.4028/www.scientific.net/msf.1038.514
  • Tsoi, A. A., Demekhin, F. V. (2015). Testing of fire resistant materials in the conditions of the hydrocarbon temperat ure mode. Nauchno­analiticheskii zhurnal Vestnik Sankt­Peterburgskogo universiteta Gosudarstvennoi protivopozharnoi sluzhby MCHS Rossii, 4, 20–24.
  • Kovalov, A. I., Kachkar, Ye. V., Zobenko, N. V., Dolishnii, Yu. V. (2014). Eksperymentalne doslidzhennia vohnezakhysnoi zdatnosti pokryttia Amotherm Steel Wb pry temperaturnomu rezhymovi vuhlevodnevoi pozhezhi. Pozhezhna bezpeka: teoriia i praktyka, 17, 53–60.
  • Kovalov, A. I., Slovinskyi, V. K. (2019). Research of fireproof capabilityofcoating for metal constructions using experiment and calculationmethod. Nadzvychaini sytuatsii: poperedzhennia ta likvidatsiia, 3 (2), 37–47.
  • Kovalev, A. I., Zobenko, N. V., Oliinik, I. Ya. (2017). Opredelenie kharakteristiki ognezaschitnoi sposobnosti pokritii metallicheskikh konstruktsii pri ikh ispitaniyakh v usloviyakh temperaturnogo rezhima uglevodorodnogo pozhara. New technologies and achievements in metallurgy, material engineering, production engineering and physics.
  • Kovalov, A. I., Otrosh, Yu. A., Tomenko, V. I. (2020). The modelling of the thermal state of the steel constructions under the hydrocarbon fire temperature mode. Problemy nadzvychainykh sytuatsii, 31, 187–197.
  • Kovalov, A. I. (2017). Doslidzhennia tochnosti vyznachennia parametriv pokryttiv dlia vohnezakhystu stalevykh konstruktsii. Promyslove budivnytstvo ta inzhenerni sporudy, 4, 11–15.
  • Vasilchenko, A., Otrosh, Y., Adamenko, N., Doronin, E., Kovalov, A. (2018). Feature of fire resistance calculation of steel structures with intumescent coating. MATEC Web of Conferences, 230, 02036. doi: http://doi.org/10.1051/matecconf/201823002036
  • Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Biryukov, I., Butenko, T. et. al. (2021). Short­term fire forecast based on air state gain recurrence and zero­order brown model. Eastern­European Journal of Enterprise Technologies, 3 (10 (111)), 27–33. doi: http://doi.org/10.15587/1729­4061.2021.233606
  • Guzii, S. G., Otrosh, Y., Guzii, O., Kovalov, A., Sotiriadis, K. (2021). Determination of the Fire­Retardant Efficiency of Magnesite Thermal Insulating Materials to Protect Metal Structures from Fire. Materials Science Forum, 1038, 524–530. doi: http://doi.org/10.4028/www.scientific.net/msf.1038.524
  • Kovalev, A. I. (2012). Vliyanie pogreshnostei v izmerenii temperatur na tochnost opredeleniya teplofizicheskikh kharakteristik pokrytii monolitnykh zhelezobetonnykh perekrytii. Pozhezhna bezpeka: teorіya і praktika, 12, 41–45.
  • Kovalev, A. I. (2007). K probleme otsenki adgezii ognezaschitnykh pokrytii Naukovii vіsnik budіvnitstva, 41, 273–275.