Conference paper Open Access

Musical Instrument Recognition in User-generated Videos using a Multimodal Convolutional Neural Network Architecture

Slizovskaia, Olga; Gómez, Emilia; Haro, Gloria

This paper presents a method for recognising musical instruments in user-generated videos. Musical instrument recognition from music signals is a well-known task in the music information retrieval (MIR) field, where current approaches rely on the analysis of the good-quality audio material. This work addresses a real-world scenario with several research challenges, i.e. the analysis of user-generated videos that are varied in terms of recording conditions and quality and may contain multiple instruments sounding simultaneous and background noise. Our approach does not only focus on the analysis of audio information, but we exploit the multimodal information embedded in the audio and visual domains. In order to do so, we develop a Convolutional Neural Network (CNN) architecture which combines learned representations from both modalities at a late fusion stage.
   Our approach is trained and evaluated on two large-scale video datasets: YouTube-8M and FCVID. The proposed architectures demonstrate state-of-the-art results in audio and video object recognition, provide additional robustness to missing modalities, and remains computationally cheap to train.

This work is partly supported by the Spanish Ministry of Economy and Competitiveness under the Maria de Maeztu Units of Excellence Programme (MDM-2015-0502), the CASAS Spanish research project (TIN2015-70816-R), and project TIN2015-70410-C2-1-R (MINECO/FEDER, UE). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X GPU used for this research.
Files (1.1 GB)
Name Size
icmrfp152-slizovskaiaA.pdf md5:45e9d87bdadcca7a1aa4dbc81fdce94a 1.3 MB Download
weights.zip md5:ad18c01f73cef4ea3d745223b9309c82 1.1 GB Download

Share

Cite as