Published January 11, 2022 | Version v1
Dataset Open

Ensemble statistics for modelled Eddy Kinetic Energy in the Southern Ocean

  • 1. Australian National University
  • 2. Univ. Brest
  • 3. Univ. Grenoble Alpes

Description

This dataset contains surface eddy kinetic energy over the Southern Ocean region, sourced from a 50-member ensemble of 0.25° ocean model simulations. It is used in the paper "Circumpolar variations in the chaotic nature of Southern Ocean eddy dynamics" published in Journal of Geophysical Research - Oceans.

This dataset has been computed from the OceaniC Chaos – ImPacts, strUcture, predicTability (OCCIPUT) global ocean/sea-ice ensemble simulation. It is composed of 50 members with a horizontal resolution of 1/4° and 75 geopotential levels (Bessières et al., 2017, Penduff et al., 2014). The numerical configuration is based on the version 3.5 of the NEMO model (Madec, 2008). The 50 members were started on January 1st 1960 from a common 21-year spinup. A small stochastic perturbation is applied to the equation of state of sea water (as in Brankart, 2013) within each member during 1960, then switched off during the rest of the simulation. This 1-year perturbation generates an ensemble spread which grows and saturates after a few months up to a few years depending on the region. The 50 members are driven through bulk formulae during the whole 1960-2015 simulation by the same realistic 6-hourly atmospheric forcing (Drakkar Forcing Set DFS5.2, Dussin et al., 2016) derived from ERA interim atmospheric reanalysis. Data is for the period 1979-2015.

The sea level anomaly is found according to Close et al (2020) and converted into surface geostrophic velocity anomaly using the geostrophic relation. This velocity field is then used to calculate the eddy kinetic energy (EKE). Data is averaged over calendar month, and restricted to the latitude range 40°-60°S. A full description of this process is included in the companion paper.

The dataset includes EKE files (eke_0??.nc), with monthy EKE saved for the period 1979-2015 for each ensemble member, and a single file (tau.nc) for the monthly-averaged wind stress over the same period.

Notes

Funded by the Ocean Surface Topography Science Team: PIRATE - Probabilistic InteRpretation of Altimeter and in-siTu obsErvations

Files

Files (33.7 GB)

Name Size Download all
md5:e5d7a3ed3e12ba86f6143ab7baf53b03
659.4 MB Download
md5:610673acd1f33c18746ed1b89e444ec1
659.4 MB Download
md5:4fa9045ff56b4391675e934c629dc082
659.4 MB Download
md5:48e69aa422fe5db7c27417aa2f28af42
659.4 MB Download
md5:fb42b9d7cc8187e614dcc1cdd5f12507
659.4 MB Download
md5:c2abc60939ba98c6f47435de875d3787
659.4 MB Download
md5:520ca8d9f76bee8cae173beb53b8815d
659.4 MB Download
md5:86410437c222193dd9d45bd3add613e1
659.4 MB Download
md5:f4c4435bec99fdc1a936e616ced312d3
659.4 MB Download
md5:bc1b604d614929a0b0576f9be1c93ffb
659.4 MB Download
md5:2ac1c6461f1206f644d0a6f1ba0cf31a
659.4 MB Download
md5:7869d21e80676568142a0ca6ffedbb20
659.4 MB Download
md5:c5510650457b45a758b0110154e7c0bd
659.4 MB Download
md5:a6b56d3579fdb017de585ed608dc514f
659.4 MB Download
md5:ebaef24481cfbd91b35d80b5524a82f2
659.4 MB Download
md5:693a79f516d4f2ded869500fb2e32ba1
659.4 MB Download
md5:4532503cf1ac379014b9fe0db30ea1f2
659.4 MB Download
md5:a78e04b4066586cc38485ae91b6c00a5
659.4 MB Download
md5:20546a2b0866561d3fe3c02ff5bcf6d2
659.4 MB Download
md5:8d6f5b6a267620c56de3cf79bf173f81
659.4 MB Download
md5:a5fc51eb311452d7080d422edd662862
659.4 MB Download
md5:c0249ffc1fee93049b64baff161f4312
659.4 MB Download
md5:c23ad0ba2d1772929bd2ca54c8c46ad9
659.4 MB Download
md5:b30a26a6dc3723a819cc500eff549175
659.4 MB Download
md5:d3ca25c71174a93d9b3cc8c27cd3b504
659.4 MB Download
md5:3d0c7828caccdfaf7776212ac4cb8356
659.4 MB Download
md5:7982e5801f019a8890622410a32ae58f
659.4 MB Download
md5:220a5c9b297d342d38f253d96ea2b47e
659.4 MB Download
md5:fcfb0fa4ad7eec24e51a2e4b3cc47572
659.4 MB Download
md5:664b522af331f7212011777b69f0ec4c
659.4 MB Download
md5:a8a9837746d713c14ef585b24353c64c
659.4 MB Download
md5:697f7698e842e9fcf0fc9a0daf504de4
659.4 MB Download
md5:4496751e1026164302d7b0ea266074db
659.4 MB Download
md5:3a50aab078912154213c32294dd6d14f
659.4 MB Download
md5:2c25137c3ddd6bd990e3a4f70bac67ee
659.4 MB Download
md5:f47886e9c2b6a4d67354fb5bcbd8f5c2
659.4 MB Download
md5:bd2a4ac121c01ed3bddbd89fcce3a31b
659.4 MB Download
md5:373c36b6af67963f42d54d8460359100
659.4 MB Download
md5:35a0f9e61e9143296c4b0edce8780595
659.3 MB Download
md5:f5d1df75adb34373b5c892f39f9ff9ee
659.4 MB Download
md5:cd6af543d0a71f572284164a1b7d6773
659.4 MB Download
md5:c4d3e004a14bee0414899afa7ed7ef7a
659.4 MB Download
md5:818e1d99bd12287560b32c8695e6cb59
659.4 MB Download
md5:6ee2f6332cd44566e2c9b2d565fe3a52
659.4 MB Download
md5:8435a85d6fba406799a6c0bd04b18b57
659.4 MB Download
md5:d03a8e4b3d28e6988ea83ae5f078460e
659.4 MB Download
md5:a4cf23b52b279db452a618f90db95b0b
659.5 MB Download
md5:65c3c967b07f1bc55129267203fb3b84
659.4 MB Download
md5:3a82a4b91ee81fe877d913ca0ba4ffbd
659.4 MB Download
md5:2116de2138cafa98867775a24be7f467
659.4 MB Download
md5:1978389f95113495b74ad5e3462c61b6
772.9 MB Download

Additional details

Funding

Agence Nationale de la Recherche
OCCIPUT - OceaniC Chaos - ImPacts, strUcture, predicTability ANR-13-BS06-0007

References

  • Bessières, L., Leroux, S., Brankart, J.-M., Molines, J.-M., Moine, M.-P., Bouttier, P.-A., Penduff, T., Terray, L., Barnier, B., and Sérazin, G., 2017: Development of a probabilistic ocean modelling system based on NEMO 3.5: application at eddying resolution, Geosci. Model Dev., 10, 1091-1106, doi:10.5194/gmd-10-1091-2017
  • Brankart, J.-M. (2013). Impact of uncertainties in the horizontal density gradient upon low resolution global ocean modelling. Ocean Modelling, 66, 64–76. doi: j.ocemod.2013.02.004
  • Close, S., Penduff, T., Speich, S., Molines, J.-M., (2020). A means of estimating the intrinsic and atmospherically-forced contributions to sea surface height variability applied to altimetric observations, Progress in Oceanography, 184, doi: 10.1016/j.pocean.2020.102314.
  • Dussin, R., Barnier, B., Brodeau, L., Molines, J. M. (2016). The making of Drakkar forcing set DFS5. DRAKKAR/MyOcean report 01-04-16, IGE, Grenoble, France
  • Madec, G. (2008). NEMO Ocean Engine. Note du Pole de modélisation. Institut Pierre-. Simon Laplace (IPSL)Madec, G. (2016). NEMO ocean engine. Institut Pierre-Simon Laplace (IPSL). Retrieved from https://www.nemo-ocean.eu/doc
  • Penduff, T., Barnier, B., Terray, L., Bessières, L., Sérazin, G., Gregorio, S., Brankart, J., Moine, M., Molines, J., and Brasseur, P.: Ensembles of eddying ocean simulations for climate, CLIVAR Exchanges, Special Issue on High Resolution Ocean Climate Modelling, 19, 2014