Dataset Open Access

Nonhuman Primate Reaching with Multichannel Sensorimotor Cortex Electrophysiology

O'Doherty, Joseph E.; Cardoso, Mariana M. B.; Makin, Joseph G.; Sabes, Philip N.

General Description. This dataset consists of:

  1. The threshold crossing times of extracellularly and simultaneously recorded spikes, sorted into units (up to five, including a "hash" unit), along with sorted waveform snippets, and,
  2. The x,y position of the fingertip of the reaching hand and the x,y position of reaching targets (both sampled at 250 Hz).

The behavioral task was to make self-paced reaches to targets arranged in a grid (e.g. 8x8) without gaps or pre-movement delay intervals. One monkey reached with the right arm (recordings made in the left hemisphere); The other reached with the left arm (right hemisphere). In some sessions recordings were made from both M1 and S1 arrays (192 channels); in most sessions M1 recordings were made alone (96 channels).

Data from two primate subjects are included: 37 sessions from monkey 1 ("Indy", spanning about 10 months) and 10 sessions from monkey 2 ("Loco", spanning about 1 month), for a total of ~ 20,000 reaches and 6,500 reaches from monkeys 1 and 2, respectively.

Possible uses. These data are ideal for training BCI decoders, in particular because they are not segmented into trials. We expect that the dataset will be valuable for researchers who wish to design improved models of sensorimotor cortical spiking or provide an equal footing for comparing different BCI decoders. Other uses could include analyses of the statistics of arm kinematics, spike noise-correlations or signal-correlations, or for exploring the stability or variability of extracellular recording over sessions.

Variable names. Each file contains data in the following format. In the below, n refers to the number of recording channels, u refers to the number of sorted units, and k refers to the number of samples.

  •  chan_names - n x 1
    • A cell array of channel identifier strings, e.g. "M1 001".
  •  cursor_pos - k x 2
    • The position of the cursor in Cartesian coordinates (x, y), mm.
  •  finger_pos - k x 3 or k x 6
    • The position of the working fingertip in Cartesian coordinates (z, -x, -y), as reported by the hand tracker in cm. Thus the cursor position is an affine transformation of fingertip position using the following matrix:
      \(\begin{pmatrix} 0 & 0 \\ -10 & 0 \\ 0 & -10 \end{pmatrix}\)
      Note that for some sessions finger_pos includes the orientation of the sensor as well; the full state is thus: (z, -x, -y, azimuth, elevation, roll).
  •  target_pos - k x 2
    • The position of the target in Cartesian coordinates (x, y), mm.
  •  t - k x 1
    • The timestamp corresponding to each sample of the cursor_pos, finger_pos, and target_pos, seconds.
  •  spikes - n x u
    • A cell array of spike event vectors. Each element in the cell array is a vector of spike event timestamps, in seconds. The first unit (u1) is the "unsorted" unit, meaning it contains the threshold crossings which remained after the spikes on that channel were sorted into other units (u2, u3, etc.) For some sessions spikes were sorted into up to 2 units (i.e. u=3); for others, 4 units (u=5).
  •  wf - n x u
    • A cell array of spike event waveform "snippets". Each element in the cell array is a matrix of spike event waveforms. Each waveform corresponds to a timestamp in "spikes". Waveform samples are in microvolts.

Videos. For some sessions, we recorded screencasts of the stimulus presentation display using a dedicated hardware video grabber. These screencasts are thus a faithful representation of the stimuli and feedback presented to the monkey and are available for the following sessions:

Supplements. The raw broadband neural recordings that the spike trains in this dataset were extracted from are available for the following sessions:

Contact  Information. We would be delighted to hear from you if you find this dataset valuable, especially if it leads to publication. Corresponding author: J. E. O'Doherty <joeyo@neuroengineer.com>.

Publications making use of this dataset.

  1. Makin, J. G., O'Doherty, J. E., Cardoso, M. M. B. & Sabes, P. N. (2018). Superior arm-movement decoding from cortex with a new, unsupervised-learning algorithm. J Neural Eng 15(2): 026010. doi:10.1088/1741-2552/aa9e95 
  2. Ahmadi, N., Constandinou, T. G., & Bouganis, C. S. (2018). Spike Rate Estimation Using Bayesian Adaptive Kernel Smoother (BAKS) and Its Application to Brain Machine Interfaces. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 2018, pp. 2547-2550. doi:10.1109/EMBC.2018.8512830
  3. Balasubramanian, M., Ruiz, T., Cook, B., Bhattacharyya, S., Prabhat, Shrivastava, A. & Bouchard K. (2018). Optimizing the Union of Intersections LASSO (UoILASSO) and Vector Autoregressive (UoIVAR) Algorithms for Improved Statistical Estimation at Scale. arXiv preprint arXiv:1808.06992
  4. Ahmadi, N., Constandinou, T. G., & Bouganis, C. S. (2019). Decoding Hand Kinematics from Local Field Potentials Using Long Short-Term Memory (LSTM) Network. arXiv preprint arXiv:1901.00708
  5. Clark, D. G., Livezey, J. A., & Bouchard, K. E. (2019). Unsupervised Discovery of Temporal Structure in Noisy Data with Dynamical Components Analysis. arXiv preprint arXiv:1905.09944

 

This research was supported by the Congressionally Directed Medical Research Program (W81XWH-14-1-0510). JEO was supported by fellowship #2978 from the Paralyzed Veterans of America. JGM was supported by a fellowship from the Swartz Foundation.
Files (24.0 GB)
Name Size
indy_20160407_02.mat
md5:63ab3e2e55652fb5709eb024642111cf
418.1 MB Download
indy_20160411_01.mat
md5:cee905e1021535626a442748e5612643
663.3 MB Download
indy_20160411_02.mat
md5:1f7b4d964f931411789d1aa2ff10f018
590.1 MB Download
indy_20160418_01.mat
md5:ae16e46a6f1614103b451c17674ff3eb
817.2 MB Download
indy_20160419_01.mat
md5:e5155b431035f32ee37c81915db755fc
376.5 MB Download
indy_20160420_01.mat
md5:02546235653357a08430b5dd8d5d1265
923.5 MB Download
indy_20160426_01.mat
md5:cfbeaffc1717e2dd11ee8c5ac6f7a297
1.1 GB Download
indy_20160622_01.mat
md5:c33d5fff31320d709d23fe445561fb6e
909.0 MB Download
indy_20160624_03.mat
md5:9aa921f0788f6ccd32a1b8808c18eabd
144.0 MB Download
indy_20160627_01.mat
md5:de58797d649bdf2bec589c074ee991d2
1.1 GB Download
indy_20160630_01.mat
md5:197413a5339630ea926cbd22b8b43338
382.2 MB Download
indy_20160915_01.mat
md5:ef6a95c5a1a8d2126b90f5be0505e398
106.6 MB Download
indy_20160916_01.mat
md5:5587d27f46efa3c09a7f589f2addf3a9
124.0 MB Download
indy_20160921_01.mat
md5:788a0fc779bdfffa8388b1108e1d1ce5
109.2 MB Download
indy_20160927_04.mat
md5:c7f84c83f10494b34ec836ed2b3c9d58
120.3 MB Download
indy_20160927_06.mat
md5:af9b8bacc1079e5a1edb2bd6eadecfb8
126.9 MB Download
indy_20160930_02.mat
md5:87bd8c05d60200a5e0d86fd8e88748e2
117.9 MB Download
indy_20160930_05.mat
md5:30a8dc9229306d81288e8ae39c9e4942
100.7 MB Download
indy_20161005_06.mat
md5:5ea300952642e0fc54245144499db9bb
84.0 MB Download
indy_20161006_02.mat
md5:8e19ada5feee4cdef47a0ec66503076f
107.7 MB Download
indy_20161007_02.mat
md5:6426f0fe91a9a90f66cbb17c44e20c0d
138.7 MB Download
indy_20161011_03.mat
md5:90dc409a749b3c0da72b901d2b5d106e
158.4 MB Download
indy_20161013_03.mat
md5:8f92ff163bc409134af6ebd161dec826
107.0 MB Download
indy_20161014_04.mat
md5:d8cf4a2866f56b4c46513ff9fe5ddaf4
139.3 MB Download
indy_20161017_02.mat
md5:7a1bff8e115e7e58eae7cbc63a72ed98
129.9 MB Download
indy_20161024_03.mat
md5:cc8e198ae6330338af584d9e1204800d
126.7 MB Download
indy_20161025_04.mat
md5:13589b4c7cfad158e5a1aebd2d71f6e3
110.3 MB Download
indy_20161026_03.mat
md5:3b5f2c35eecc5175c526869d50f2eada
111.7 MB Download
indy_20161027_03.mat
md5:bae4f5b76c50e2e2aed775e6d2482fc3
128.2 MB Download
indy_20161206_02.mat
md5:ce33b61b7870e635bea5cab7601d27c3
177.1 MB Download
indy_20161207_02.mat
md5:b984a86fd30417fa8301136102caf2ad
106.2 MB Download
indy_20161212_02.mat
md5:41f420af06373b456ede45da0536a10f
97.5 MB Download
indy_20161220_02.mat
md5:ad57bf06ac505e4d70ae7100c721b8aa
112.7 MB Download
indy_20170123_02.mat
md5:a3ce046e0b67b489d19e34a31232d512
139.7 MB Download
indy_20170124_01.mat
md5:ea1721fefe443420a356b4f93f5bb731
152.0 MB Download
indy_20170127_03.mat
md5:3d77802c59e3e4ebe6778326cfc68c0a
171.8 MB Download
indy_20170131_02.mat
md5:2790b1c869564afaa7772dbf9e42d784
208.8 MB Download
loco_20170210_03.mat
md5:4cae63b58c4cb9c8abd44929216c703b
1.1 GB Download
loco_20170213_02.mat
md5:e051a2ddfeb67f31395a8f934b6a04bf
1.3 GB Download
loco_20170214_02.mat
md5:3f410a56706563b4ce5584c5b5c83cf2
1.6 GB Download
loco_20170215_02.mat
md5:739b70762d838f3a1f358733c426bb02
779.5 MB Download
loco_20170216_02.mat
md5:ec480664e7da8c6be0ba8ee709eecf8b
1.3 GB Download
loco_20170217_02.mat
md5:bba2889a6ea20e74c8a9054e97a80dd4
1.2 GB Download
loco_20170227_04.mat
md5:47dc8d717ac4e46af31a696422d83ed7
1.4 GB Download
loco_20170228_02.mat
md5:79d99cd6b8db25ba0420a906350a44ff
1.6 GB Download
loco_20170301_05.mat
md5:47342da09f9c950050c9213c3df38ea3
902.2 MB Download
loco_20170302_02.mat
md5:ccbba097e02fa300ab5a87b27702f337
2.0 GB Download
  • 1. Makin, J. G., O'Doherty, J. E., Cardoso, M. M. B. & Sabes, P. N. (2018). Superior arm-movement decoding from cortex with a new, unsupervised-learning algorithm. J Neural Eng. 15(2): 026010. doi:10.1088/1741-2552/aa9e95

1,254
1,884
views
downloads
All versions This version
Views 1,2541,256
Downloads 1,8841,884
Data volume 953.7 GB953.7 GB
Unique views 1,0401,042
Unique downloads 133133

Share

Cite as