Published May 4, 2021 | Version 1
Journal article Open

Plasmids conferring resistance to extended-spectrum beta-lactamases including a rare IncN+IncR multireplicon carrying blaCTX-M-1in Escherichia colirecovered from migrating barnacle geese (Branta leucopsis)

  • 1. Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
  • 2. Wageningen Bioveterinary Research, Lelystad, The Netherlands
  • 3. Laboratory and Research Division, Microbiology Unit, Finnish Food Authority, Seinäjoki, Finland

Description

Background: Increasing antimicrobial resistance (AMR) is a global threat and wild migratory birds may act as mediators of resistant bacteria across country borders. Our objective was to study extended-spectrum beta-lactamase (ESBL) and plasmid-encoded AmpC (pAmpC) producing Escherichia coli in barnacle geese using whole genome sequencing (WGS) and to identify plasmids harboring bla genes.

Methods: Barnacle geese feces (n=200) were collected during fall 2017 and spring 2018 from an urban area in Helsinki, Finland. ESBL/AmpC-producing E. coli were recovered from nine samples (4.5%) and isolates were subjected to WGS on both short- and long-read sequencers, enabling hybrid assembly and determination of the genomic location of bla genes.

Results: A rare multireplicon IncN+IncR was recovered from one isolate carrying bla CTX-M-1 in addition to aadA2b, lnu(F), and qnrS1. Moreover, rarely detected IncY plasmids in two isolates were found to harbor multiple resistance genes in addition to the human-associated bla CTX-M-15. Poultry-associated bla CMY-2 was identified from the widely distributed IncI1 and IncK plasmids from four different isolates. One isolate harbored an IncI1 plasmid with bla CTX-M-1 and flor. A chromosomal point mutation in the AmpC promoter was identified in one of the isolates. WGS analysis showed isolates carried multiple resistance and virulence genes and harbored multiple different plasmid replicons in addition to bla-carrying plasmids.

Conclusions: Our findings suggest that wild migratory birds serve as a limited source of ESBL/AmpC-producing E. coli and may act as disseminators of the epidemic plasmid types IncI1 and IncK but also rarely detected plasmid types carrying multidrug resistance. Human and livestock-associated ESBL enzyme types were recovered from samples, suggesting a potential for interspecies transmission. WGS offers a thorough method for studying AMR from different sources and should be implemented more widely in the future for AMR surveillance and detection. Understanding plasmid epidemiology is vital for efforts to mitigate global AMR spread.

Files

openreseurope-1-14599.pdf

Files (3.8 MB)

Name Size Download all
md5:487c2f3a1abe39b11021913681c8ad14
3.8 MB Preview Download

Additional details

References

  • Accogli M, Fortini D, Giufrè M (2013). IncI1 plasmids associated with the spread of CMY-2, CTX-M-1 and SHV-12 in of animal and human origin. Clin Microbiol Infect. doi:10.1111/1469-0691.12128
  • Alcalá L, Alonso CA, Simón C (2016). Wild Birds, Frequent Carriers of Extended-Spectrum β-Lactamase (ESBL) Producing of CTX-M and SHV-12 Types. Microb Ecol. doi:10.1007/s00248-015-0718-0
  • Alikhan NF, Petty NK, Ben Zakour NL (2011). BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genomics. doi:10.1186/1471-2164-12-402
  • Atterby C, Börjesson S, Ny S (2017). ESBL-producing in Swedish gulls—A case of environmental pollution from humans?. PLoS One. doi:10.1371/journal.pone.0190380
  • Azam M, Mohsin M, Johnson TJ (2020). Genomic landscape of multi-drug resistant avian pathogenic recovered from broilers. Vet Microbiol. doi:10.1016/j.vetmic.2020.108766
  • Bielak E, Bergenholtz RD, Jørgensen MS (2011). Investigation of diversity of plasmids carrying the bla gene. J Antimicrob Chemother. doi:10.1093/jac/dkr331
  • Bonnedahl J, Drobni M, Gauthier-Clerc M (2009). Dissemination of with CTX-M type ESBL between humans and yellow-legged gulls in the south of France. PLoS One. doi:10.1371/journal.pone.0005958
  • Bonnedahl J, Hernandez J, Stedt J (2014). Extended-spectrum β-lactamases in and in Gulls, Alaska, USA. Emerg Infect Dis. doi:10.3201/eid2005.130325
  • Bonnedahl J, Järhult JD (2014). Antibiotic resistance in wild birds. Ups J Med Sci. doi:10.3109/03009734.2014.905663
  • Brouwer MSM, Tagg KA, Mevius DJ (2015). IncI shufflons: Assembly issues in the next-generation sequencing era. Plasmid. doi:10.1016/j.plasmid.2015.04.009
  • Carattoli A (2009). Resistance plasmid families in . Antimicrob Agents Chemother. doi:10.1128/AAC.01707-08
  • Carattoli A, Aschbacher R, March A (2010). Complete nucleotide sequence of the IncN plasmid pKOX105 encoding VIM-1, QnrS1 and SHV-12 proteins in Enterobacteriaceae from Bolzano, Italy compared with IncN plasmids encoding KPC enzymes in the USA. J Antimicrob Chemother. doi:10.1093/jac/dkq269
  • Carattoli A (2011). Plasmids in Gram negatives: Molecular typing of resistance plasmids. Int J Med Microbiol. doi:10.1016/j.ijmm.2011.09.003
  • Carattoli A (2013). Plasmids and the spread of resistance. Int J Med Microbiol. doi:10.1016/j.ijmm.2013.02.001
  • Carattoli A, Zankari E, Garciá-Fernández A (2014). detection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. doi:10.1128/AAC.02412-14
  • Carroll D, Wang J, Fanning S (2015). Antimicrobial Resistance in Wildlife: Implications for Public Health. Zoonoses Public Health. doi:10.1111/zph.12182
  • (2019). Antibiotic resistance threats in the United States, 2019. doi:10.15620/cdc:82532
  • Chen YT, Shu HY, Li LH (2006). Complete nucleotide sequence of pK245, a 98-kilobase plasmid conferring quinolone resistance and extended-spectrum-beta-lactamase activity in a clinical isolate. Antimicrob Agents Chemother. doi:10.1128/AAC.00456-06
  • Clausen PTLC, Aarestrup FM, Lund O (2018). Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinformatics. doi:10.1186/s12859-018-2336-6
  • Darwich L, Vidal A, Seminati C (2019). High prevalence and diversity of extended-spectrum β-lactamase and emergence of OXA-48 producing in wildlife in Catalonia. PLoS One. doi:10.1371/journal.pone.0210686
  • Day MJ, Hopkins KL, Wareham DW (2019). Extended-spectrum β-lactamase-producing in human-derived and foodchain-derived samples from England, Wales, and Scotland: an epidemiological surveillance and typing study. Lancet Infect Dis. doi:10.1016/S1473-3099(19)30273-7
  • Delver EP, Belogurov AA (1997). Organization of the leading region of IncN plasmid pKM101 (R46): A regulation controlled by CUP sequence elements. J Mol Biol. doi:10.1006/jmbi.1997.1124
  • Drieux L, Decré D, Frangeul L (2013). Complete nucleotide sequence of the large conjugative pTC2 multireplicon plasmid encoding the VIM-1 metallo-β-lactamase. J Antimicrob Chemother. doi:10.1093/jac/dks367
  • Dolejska M, Villa L, Hasman H (2013). Characterization of IncN plasmids carrying bla and qnr genes in and Salmonella from animals, the environment and humans. J Antimicrob Chemother. doi:10.1093/jac/dks387
  • Dolejska M, Papagiannitsis CC (2018). Plasmid-mediated resistance is going wild. Plasmid. doi:10.1016/j.plasmid.2018.09.010
  • (2011). Scientific Opinion on the public health risks of bacterial strains producing extended-spectrum β-lactamases and/or AmpC β-lactamases in food and food-producing animals. EFSA J. doi:10.2903/j.efsa.2011.2322
  • (2020). The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J. doi:10.2903/j.efsa.2020.6007
  • Elmberg J, Berg C, Lerner H (2017). Potential disease transmission from wild geese and swans to livestock, poultry and humans: a review of the scientific literature from a One Health perspective. Infect Ecol Epidemiol. doi:10.1080/20008686.2017.1300450
  • (2017). European Committee on Antimicrobial Susceptibility Testing. EUCAST Disk Diffusion Method Manual 6.0.
  • (2019). European Committee on Antimicrobial Susceptibility Testing. Antimicrobial wild type, distributions of microorganisms.
  • Ewers C, Bethe A, Semmler T (2012). Extended-spectrum β-lactamase-producing and AmpC-producing Escherichia from livestock and companion animals, and their putative impact on public health: A global perspective. Clin Microbiol Infect. doi:10.1111/j.1469-0691.2012.03850.x
  • Fox AD, Leafloor JO (2018). A global audit of the status and trends of Arctic and Northern Hemisphere goose populations.
  • Frankel G, Phillips AD, Rosenshine I (1998). Enteropathogenic and enterohaemorrhagic  : more subversive elements. Mol Microbiol. doi:10.1046/j.1365-2958.1998.01144.x
  • García-Fernández A, Fortini D, Veldman K (2009). Characterization of plasmids harbouring , and genes in . J Antimicrob Chemother. doi:10.1093/jac/dkn470
  • Guenther S, Aschenbrenner K, Stamm I (2012). Comparable High Rates of Extended-Spectrum-Beta-Lactamase-Producing in Birds of Prey from Germany and Mongolia. PLoS One. doi:10.1371/journal.pone.0053039
  • Guo Q, Spychala CN, McElheny CL (2016). Comparative analysis of an IncR plasmid carrying , and from ST37 isolates. J Antimicrob Chemother. doi:10.1093/jac/dkv444
  • Hasman H, Saputra D, Sicheritz-Ponten T (2014). Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples. J Clin Microbiol. doi:10.1128/JCM.02452-13
  • Hatha AAM, Divya PS, Saramma AV (2013). Migratory bird, Branta leucopis (Barnacle goose), a potential carrier of diverse Escherichia coli serotypes into pristime Arctic environment. Curr Sci.
  • Hernández J, González-Acuña D (2016). Anthropogenic antibiotic resistance genes mobilization to the polar regions. Infect Ecol Epidemiol. doi:10.3402/iee.v6.32112
  • Hessman J, Atterby C, Olsen B (2018). High Prevalence and Temporal Variation of Extended Spectrum β-Lactamase-Producing Bacteria in Urban Swedish Mallards. Microb Drug Resist. doi:10.1089/mdr.2017.0263
  • Holmes AH, Moore LSP, Sundsfjord A (2016). Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. doi:10.1016/S0140-6736(15)00473-0
  • Jensen GH, Madsen J, Nagy S (2018). AEWA International Single Species Management Plan for the Barnacle Goose (Branta leucopsis) - Russia/Germany & Netherlands population, East Greenland/Scotland & Ireland population, Svalbard/South-west Scotland population.
  • Jiang X, Cui X, Xu H (2019). Whole Genome Sequencing of Extended-Spectrum Beta-Lactamase (ESBL)-Producing Isolated From a Wastewater Treatment Plant in China. Front Microbiol. doi:10.3389/fmicb.2019.01797
  • Jing Y, Jiang X, Yin Z (2019). Genomic diversification of IncR plasmids from China. J Glob Antimicrob Resist. doi:10.1016/j.jgar.2019.06.007
  • Joensen KG, Scheutz F, Lund O (2014). Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic . J Clin Microbiol. doi:10.1128/JCM.03617-13
  • Johnson TJ, Wannemuehler YM, Nolan LK (2008). Evolution of the gene in . Appl Environ Microbiol. doi:10.1128/AEM.02634-07
  • Jones KE, Patel NG, Levy MA (2008). Global trends in emerging infectious diseases. Nature. doi:10.1038/nature06536
  • Kim YB, Yoon MY, Ha JS (2020). Molecular characterization of avian pathogenic from broiler chickens with colibacillosis. Poult Sci. doi:10.1016/j.psj.2019.10.047
  • Kuczkowski M, Krawiec M, Voslamber B (2016). Virulence Genes and the Antimicrobial Susceptibility of , Isolated from Wild Waterbirds, in the Netherlands and Poland. Vector Borne Zoonotic Dis. doi:10.1089/vbz.2015.1935
  • Lääveri T, Vlot JA, van Dam AP (2018). Extended-spectrum beta-lactamase-producing (ESBL-PE) among travellers to Africa: Destination-specific data pooled from three European prospective studies. BMC Infect Dis. doi:10.1186/s12879-018-3245-z
  • Larsen MV, Cosentino S, Rasmussen S (2012). Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol. doi:10.1128/JCM.06094-11
  • Larsen MV, Cosentino S, Lukjancenko O (2014). Benchmarking of methods for genomic taxonomy. J Clin Microbiol. doi:10.1128/JCM.02981-13
  • Leverstein-van Hall MA, Dierikx CM, Stuart JC (2011). Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin Microbiol Infect. doi:10.1111/j.1469-0691.2011.03497.x
  • Liu YY, Lin JW, Chen CC (2019). cano-wgMLST_BacCompare: A Bacterial Genome Analysis Platform for Epidemiological Investigation and Comparative Genomic Analysis. Front Microbiol. doi:10.3389/fmicb.2019.01687
  • Llarena AK, Skarp-de Haan CPA, Rossi M (2015). Characterization of the Population in the Barnacle Geese Reservoir. Zoonoses Public Health. doi:10.1111/zph.12141
  • Ludwiczak M, Dolowy P, Markowska A (2013). Global transcriptional regulator KorC coordinates expression of three backbone modules of the broad-host-range RA3 plasmid from IncU incompatibility group. Plasmid. doi:10.1016/j.plasmid.2013.03.007
  • Meyer J, Stålhammar-Carlemalm M, Streiff M (1986). Sequence relations among the IncY plasmid p15B, P1, and P7 prophages. Plasmid. doi:10.1016/0147-619x(86)90066-1
  • Moremi N, Manda EV, Falgenhauer L (2016). Predominance of CTX-M-15 among ESBL producers from environment and fish gut from the shores of Lake Victoria in Mwanza, Tanzania. Front Microbiol. doi:10.3389/fmicb.2016.01862
  • Mughini-Gras L, Dorado-García A, van Duijkeren E (2019). Attributable sources of community-acquired carriage of containing β-lactam antibiotic resistance genes: a population-based modelling study. Lancet Planet Health. doi:10.1016/S2542-5196(19)30130-5
  • Müller A, Stephan R, Nüesch-Inderbinen M (2016). Distribution of virulence factors in ESBL-producing isolated from the environment, livestock, food and humans. Sci Total Environ. doi:10.1016/j.scitotenv.2015.09.135
  • Niskanen T, Waldenström J, Fredriksson-Ahomaa M (2003). -positive and found in migratory birds in Sweden. Appl Environ Microbiol. doi:10.1128/aem.69.8.4670-4675.2003
  • Nordmann P, Poirel L (2019). Epidemiology and Diagnostics of Carbapenem Resistance in Gram-negative Bacteria. Clin Infect Dis. doi:10.1093/cid/ciz824
  • Oikarainen PE, Pohjola LK, Pietola ES (2019). Direct vertical transmission of ESBL/pAmpC-producing limited in poultry production pyramid. Vet Microbiol. doi:10.1016/j.vetmic.2019.03.001
  • Papagiannitsis CC, Miriagou V, Giakkoupi P (2013). Characterization of pKP1780, a novel IncR plasmid from the emerging ST147, encoding the VIM-1 metallo-Β-lactamase. J Antimicrob Chemother. doi:10.1093/jac/dkt196
  • Poirel L, Potron A, De La Cuesta C (2012). Wild coastline birds as reservoirs of broad-spectrum-β-lactamase-producing in Miami Beach, Florida. Antimicrob Agents Chemother. doi:10.1128/AAC.05982-11
  • Poulsen LL, Kudirkiene E, Jørgensen SL (2020). Whole genome sequence comparison of avian pathogenic from acute and chronic salpingitis of egg laying hens. BMC Vet Res. doi:10.1186/s12917-020-02369-5
  • Qu D, Shen Y, Hu L (2019). Comparative analysis of KPC-2-encoding chimera plasmids with multi-replicon IncR:Inc :IncN1 or IncFII :Inc :IncN1. Infect Drug Resist. doi:10.2147/IDR.S189168
  • Rintala ESA, Gröndahl-Yli-Hannuksela K, Lönnqvist E (2018). ESBL:ää tuottavien suolistobakteerien oireeton kantajuus Etelä-Suomessa.
  • Rozwandowicz M, Brouwer MSM, Fischer J (2018). Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother. doi:10.1093/jac/dkx488
  • Sandegren L, Stedt J, Lustig U (2018). Long-term carriage and rapid transmission of extended spectrum beta-lactamase-producing within a flock of Mallards in the absence of antibiotic selection. Environ Microbiol Rep. doi:10.1111/1758-2229.12681
  • Seemann T (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics. doi:10.1093/bioinformatics/btu153
  • Simões RR, Poirel L, Da Costa PM (2010). Seagulls and beaches as reservoirs for multidrug-resistant . Emerg Infect Dis. doi:10.3201/eid1601.090896
  • Stedt J, Bonnedahl J, Hernandez J (2015). Carriage of CTX-M type extended spectrum β-lactamases (ESBLs) in gulls across Europe. Acta Vet Scand. doi:10.1186/s13028-015-0166-3
  • (null). Valkoposkihanhien seuranta.
  • (null). Valkoposkihanhien väheneminen pääkaupunkiseudulla taittui.
  • Tivendale KA, Allen JL, Ginns CA (2004). Association of iss and iucA, but not tsh, with plasmid-mediated virulence of avian pathogenic . Infect Immun. doi:10.1128/IAI.72.11.6554-6560.2004
  • van der Bij AK, Pitout JDD (2012). The role of international travel in the worldwide spread of multiresistant Enterobacteriaceae. J Antimicrob Chemother. doi:10.1093/jac/dks214
  • Veldman K, van Tulden P, Kant A (2013). Characteristics of cefotaxime-resistant from wild birds in The Netherlands. Appl Environ Microbiol. doi:10.1128/AEM.01880-13
  • Vermeulen N, Keeler WJ, Nandakumar K (2008). The bactericidal effect of ultraviolet and visible light on . Biotechnol Bioeng. doi:10.1002/bit.21611
  • Whitman RL, Nevers MB, Korinek GC (2004). Solar and temporal effects on concentration at a Lake Michigan swimming beach. Appl Environ Microbiol. doi:10.1128/AEM.70.7.4276-4285.2004
  • (null). WHO Global Health Observatory.
  • Wick RR, Judd LM, Gorrie CL (2017). Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. doi:10.1371/journal.pcbi.1005595
  • Wirth T, Falush D, Lan R (2006). Sex and virulence in : An evolutionary perspective. Mol Microbiol. doi:10.1111/j.1365-2958.2006.05172.x
  • Woerther PL, Andremont A, Kantele A (2017). Travel-acquired ESBL-producing : impact of colonization at individual and community level. J Travel Med. doi:10.1093/jtm/taw101
  • Yasir M, Farman M, Shah MW (2020). Genomic and antimicrobial resistance genes diversity in multidrug-resistant CTX-M-positive isolates of at a health care facility in Jeddah. J Infect Public Health. doi:10.1016/j.jiph.2019.06.011
  • Yrjölä RA, Holopainen S, Pakarinen R (2017). The Barnacle Goose ( ) in the archipelago of southern Finland - population growth and nesting dispersal.
  • Zankari E, Hasman H, Cosentino S (2012). Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. doi:10.1093/jac/dks261
  • Zhou Z, Alikhan NF, Sergeant MJ (2018). Grapetree: Visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. doi:10.1101/gr.232397.117