Published December 29, 2021 | Version v1
Book chapter Open

Research of the processes of acoustic cavitation technology for processing dispersed media

  • 1. Kyiv National University of Construction and Architecture
  • 2. Vinnytsia National Agrarian University

Description

The operation process of acoustic treatment of technological media is investigated. The assessment and substantiation of methods for studying the parameters of acoustic treatment of technological media is done. The functional relationships between the acoustic parameters of the cavitation apparatus and the rheological properties of the processing technological media have been revealed. The process of staged acoustic treatment of technological media is described. A number of criteria and key parameters were determined, the use of which was carried out as an assessment in the calculation algorithm, depending on certain known initial data of the cavitator and the medium. The values of the input resistance of the compensator are determined and the condition for the maximum transfer of energy from the acoustic apparatus to the technological medium is obtained. To calculate the parameters of the «cavitator – technological medium» ultrasonic cavitation system, an algorithm and method for creating a synergistic system were developed.

Files

Research of the processes of acoustic cavitation technology for processing dispersed media.pdf

Additional details

References

  • Kaletnik, H., Sevostianov, I., Bulgakov, V., Holovach, I., Melnik, V., Ihnatiev, Ye., Olt, J. (2020). Development and examination of high-performance fluidised-bed vibration drier for processing food production waste. Agronomy Research, 18 (4), 2391–2409. doi: http://doi.org/10.15159/ar.20.234
  • Bulgakov, V., Sevostianov, I., Kaletnik, G., Babyn, I., Ivanovs, S., Holovach, I., Ihnatiev, Y. (2020). Theoretical Studies of the Vibration Process of the Dryer for Waste of Food. Rural Sustainability Research, 44 (339), 32–45. doi: http://doi.org/10.2478/plua-2020-0015
  • Kaletnik, G., Tsurkan, O., Rimar, T., Stanislavchuk, O. (2020). Determination of the kinetics of the process of pumpkin seeds vibrational convective drying. Eastern-European Journal of Enterprise Technologies, 1 (8 (103)), 50–57. doi: http://doi.org/10.15587/1729-4061.2020.195203
  • Bernyk, I. M. (2011). Osnovni zasady proektuvannia mashyn i obladnannia pererobnykh vyrobnytstv. Teoriia i praktyka budivnytstva, 8, 6–9.
  • Vitenko, T. M. (2009). Hidrodynamichna kavitatsiia u masoobminnykh, khimichnykh i biolohichnykh protsesakh. Ternopil: Vydavnytstvo TDTU im. I Puliuia, 224.
  • Khmelev, V. N., Slivin, A. N., Barsukov, R. V., Tsyganok, S. N., Shalunov, A. V. (2010). Primenenie ultrazvuka vysokoi intensivnosti v promyshlennosti. Biisk: Izd-vo Alt. gos. tekhn. un-ta, 203.
  • Nazarenko, I., Dedov, O., Bernyk, I., Rogovskii, I., Bondarenko, A., Zapryvoda, A. et. al. (2020). Determining the regions of stability in the motion regimes and parameters of vibratory machines for different technological purposes. Eastern-European Journal of Enterprise Technologies, 6 (7 (108)), 71–79. doi: http://doi.org/10.15587/1729-4061.2020.217747
  • Luhovskyi, O. F., Bernyk, I. M. (2014). Vstanovlennia osnovnykh parametriv vplyvu tekhnolohichnoho seredovyshcha na robochyi protses ultrazvukovoi kavitatsiinoi obrobky. Vibratsii v tekhnitsi ta tekhnolohiiakh, 3 (75), 121–126.
  • Bernyk, I. M. (2015). Enerhetyka kavitatsiinoi obrobky tekhnolohichnoho seredovyshcha. Naukovi pratsi ONAKhT, 1 (47), 123–129.
  • Luhovskaia, E. A., Yakhno, O. M., Bernyk, Y. N. (2012). Model of Technological Process of Ultrasonic Clearing of Elastic Surfaces Management. Naukovi pratsi Don NTU. Seriia: Hirnycho-elektromekhanichna, 23 (196), 154–166.
  • Luhovskyi, O. F., Gryshko, I. A., Bernyk, I. M. (2018). Enhancing the Efficiency of Ultrasonic Wastewater Disinfection Technology. Journal of Water Chemistry and Technology, 40 (2), 95–101. doi: http://doi.org/10.3103/s1063455x18020078
  • Bernyk, I., Luhovskyi, O., Nazarenko, I. (2018). Effect of rheological properties of materials on their treatment with ultrasonic cavitation. Materiali in Tehnologije, 52 (4), 465–468. doi: http://doi.org/10.17222/mit.2017.021
  • Bernyk, I., Luhovskyi, O., Wojcik, W., Shedreyeva, I., Karnakova, G. (2019). Theoretical Investigations of the Interaction of Acoustic Apparatus with Technological Environment Working Process. Przeglad Elektrotechniczny, 1 (4), 32–37. doi: http://doi.org/10.15199/48.2019.04.06
  • Luhovskyi, O., Bernyk, I., Gryshko, I., Abdulina, D., Zilinskyi, A.; Stryczek, J., Warzyńska, U. (Eds.) (2021). Mobile Equipment for Ultrasonic Cavitation Inactivation of Microorganisms in the Liquid Environment. NSHP 2020. Lecture Notes in Mechanical Engineering. Cham: Springer, 272–281. doi: http://doi.org/10.1007/978-3-030-59509-8_24
  • Bernyk, I., Luhovskyi, O., Nazarenko, I. (2016). Research staff process of interaction and technological environment in developed cavitation. Journal of Mechanical Engineering the National Technical University of Ukraine "Kyiv Polytechnic Institute", 1 (76), 12–19. doi: http://doi.org/10.20535/2305-9001.2016.76.39735
  • Luhovskaia, E. A., Yakhno, O. M., Bernyk, Y. N. (2012). Model of Technological Process of Ultrasonic Clearing of Elastic Surfaces Management. Naukovi pratsi Don NTU. Seriia: Hirnycho-elektromekhanichna, 23 (196), 154–166.
  • Bernyk, I. M. (2013). Intensification of technological processes of treatment of food environments. Vibratsii v tekhnitsi ta tekhnolohiiakh, 3 (71), 109–115.
  • Bernyk, I. M. (2014). Doslidzhennia parametriv kavitatsiinoho protsesu obrobky tekhnolohichnykh seredovyshch. Naukovo-tekhnichnyi zhurnal Tekhnika budivnytstva, 33, 21–26.
  • Bernyk, I. M. (2018). Investigation of the viscosity of dispersed media under conditions of their intensive processing. Tekhnika, enerhetyka, transport APK, 1 (100), 62–67.
  • Ohirko, O. I., Halaiko, N. V. (2017). Teoriia ymovirnostei ta matematychna statystyka. Lviv: LvDUVS, 292.
  • Sirotiuk, M. G., Gavrilov, L. R. (2008). Akusticheskaia kavitatsiia. Moscow: Nauka, 271.
  • Goliamina, I. P. (Ed.) (1979). Ultrazvuk. Malenkaia entsiklopediia. Moscow: Sovetskaia entsiklopediia, 400.
  • Nazarenko, I., Svidersky, A., Kostenyuk, A., Dedov, O., Kyzminec, N., Slipetskyi, V. (2020). Determination of the workflow of energy-saving vibration unit with polyphase spectrum of vibrations. Eastern-European Journal of Enterprise Technologies, 1 (7 (103)), 43–49. doi: http://doi.org/10.15587/1729-4061.0.184632
  • Nazarenko, I., Gavryukov, O., Klyon, A., Ruchynsky, N. (2018). Determination of the optimal parameters of a tubular belt conveyor depending on such an economical. Eastern-European Journal of Enterprise Technologies, 3 (1 (93)), 34–42. doi: http://doi.org/10.15587/1729-4061.2018.131552
  • Nazarenko, I. I., Ruchynskyi, M. M., Sviderskyi, A. T., Kobylanska, I. M., Harasim, D., Kalizhanova, A., Kozbakova, A. (2019). Development of energy-efficient vibration machines for the buiding-and-contruction industry. Przeglad Elektrotechniczny, 95 (4), 53–59. doi: http://doi.org/10.15199/48.2019.04.10
  • Nazarenko, I., Gaidaichuk, V., Dedov, O., Diachenko, O. (2018). Determination of stresses and strains in the shaping structure under spatial load. Eastern-European Journal of Enterprise Technologies, 6 (7 (96)), 13–18. doi: http://doi.org/10.15587/1729-4061.2018.147195
  • Nazarenko, I., Gaidaichuk, V., Dedov, O., Diachenko, O. (2017). Investigation of vibration machine movement with a multimode oscillation spectrum. Eastern-European Journal of Enterprise Technologies, 6 (1 (90)), 28–36. doi: http://doi.org/10.15587/1729-4061.2017.118731